研究生: |
黃彥餘 Yen-Yu Huang |
---|---|
論文名稱: |
含圓球微相之團聯式共聚物之自組裝奈米結構研究:緊密堆積之超晶格排列與結晶引發之微相型態 Self Assembled Architecture of Sphere-Forming Poly(ethylene oxide)-block-Polybutadiene/Polybutadiene Homopolymer Blends: Closely-Packed Macrolattice and Crystallization-Induced Structural Perturbation |
指導教授: |
陳信龍
Hsin-Lung Chen |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2004 |
畢業學年度: | 92 |
語文別: | 英文 |
論文頁數: | 191 |
中文關鍵詞: | 自我組裝 、團聯式共聚合摻合体 、結晶 、超晶格排列 |
外文關鍵詞: | self assembled, block copolymer blend, crystallization, macrolattice packing, poly(ethylene oxide)-block-polybutadiene |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Self-assembly is a process that autonomously organizes the building blocks into ordered patterns or structures from a disordered state. These ordered structures usually possess a hierarchy of length scales and represent to a state of lowest free energy. Self-assembly is reversible and can be manipulated by proper controls of the external conditions (e.g. temperature, concentration). Recently, self-assembly has been exploited as a practical strategy for constructing ordered nanostructures and has thus become an essential part in nanotechnology. Block copolymers are capable of self-assembling into a series of long-range ordered morphology governed by interblock segregation strength and the volume fraction of the constituting blocks. Therefore, they have been considered as one of the most important self-assembled polymer materials.
Three topics concerning diblock copolymer blends have been studied in this dissertation, including (1) phase transition, (2) crystallization-induced perturbations of microdomain structure and (3) cocrystallization behavior. The diblock system studied in here was poly(ethylene oxide)-block-polybutadiene (PEO-b-PB).
A lamellae-forming PEO-b-PB was blended with a low molecular weight homopolymer PB (h-PB) to yield PEO spheres dispersed in the PB matrix. The first experimental evidence on the existence of face-centered cubic (FCC) phase in diblock copolymer/homopolymer blends was disclosed here. The thermal reversibility experiment verified that the FCC packing was a thermodynamically stable phase at elevated temperature. The driving force of the order-order transition (OOT) between BCC and FCC phase was postulated to stem from the balance between packing frustration and interfacial energy. More importantly, the BCC-FCC OOT was found to occur if the system contained the corresponding precursor prior to transition. The lack of such a precursor may be responsible for the prevalent lack of BCC-FCC OOT among diblock copolymer systems in the bulk.
Crystallization in the microdomains of crystalline-amorphous diblock copolymers may induce domain coalescence when the crystallization temperature lies above the Tg of the amorphous matrix. We have systematically studied the effect of crystallization on the microdomain morphology of PEO-b-PB/h-PB blends exhibiting spherical morphology in the melt. Isothermal crystallization was found to deform the originally spherical domain into ellipsoidal object with aspect ration of ca. 1.3. Drastic perturbation of the domain structure was induced by annealing the crystalline samples near the onset of melting, where two to three microdomains coalescence into a rod object. We have also examined the role of h-PB in the domain coalescence. It was observed that the blend containing higher h-PB content exhibited a stronger resistance against microdomain coalescence. The resistance was presumed to stem from the diffusion barrier associated with the rejection of a portion of h-PB originally dissolved in the coronal regions of the micelles during the coalescence process.
The binary blends of a short symmetric PEO-b-PB and a long asymmetric PEO-b-PB have been studied to examine the cocrystallization behavior of the longer and the shorter PEO blocks confined in the lamellar microdomains. Cocrystallization was found to occur over a wide range of undercooling whereas the corresponding blends of PEO homopolymers with similar molecular weights and compositions displayed phase-segregated crystallization. In contrast to the kinetically trapped solid solutions formed in homopolymer blends, the cocrystallization behavior observed here may be driven thermodynamically to attain a lower interfacial energy in the system while allowing the long PB blocks in the asymmetric diblock to relax conformationally.
Self-assembly is a process that autonomously organizes the building blocks into ordered patterns or structures from a disordered state. These ordered structures usually possess a hierarchy of length scales and represent to a state of lowest free energy. Self-assembly is reversible and can be manipulated by proper controls of the external conditions (e.g. temperature, concentration). Recently, self-assembly has been exploited as a practical strategy for constructing ordered nanostructures and has thus become an essential part in nanotechnology. Block copolymers are capable of self-assembling into a series of long-range ordered morphology governed by interblock segregation strength and the volume fraction of the constituting blocks. Therefore, they have been considered as one of the most important self-assembled polymer materials.
Three topics concerning diblock copolymer blends have been studied in this dissertation, including (1) phase transition, (2) crystallization-induced perturbations of microdomain structure and (3) cocrystallization behavior. The diblock system studied in here was poly(ethylene oxide)-block-polybutadiene (PEO-b-PB).
A lamellae-forming PEO-b-PB was blended with a low molecular weight homopolymer PB (h-PB) to yield PEO spheres dispersed in the PB matrix. The first experimental evidence on the existence of face-centered cubic (FCC) phase in diblock copolymer/homopolymer blends was disclosed here. The thermal reversibility experiment verified that the FCC packing was a thermodynamically stable phase at elevated temperature. The driving force of the order-order transition (OOT) between BCC and FCC phase was postulated to stem from the balance between packing frustration and interfacial energy. More importantly, the BCC-FCC OOT was found to occur if the system contained the corresponding precursor prior to transition. The lack of such a precursor may be responsible for the prevalent lack of BCC-FCC OOT among diblock copolymer systems in the bulk.
Crystallization in the microdomains of crystalline-amorphous diblock copolymers may induce domain coalescence when the crystallization temperature lies above the Tg of the amorphous matrix. We have systematically studied the effect of crystallization on the microdomain morphology of PEO-b-PB/h-PB blends exhibiting spherical morphology in the melt. Isothermal crystallization was found to deform the originally spherical domain into ellipsoidal object with aspect ration of ca. 1.3. Drastic perturbation of the domain structure was induced by annealing the crystalline samples near the onset of melting, where two to three microdomains coalescence into a rod object. We have also examined the role of h-PB in the domain coalescence. It was observed that the blend containing higher h-PB content exhibited a stronger resistance against microdomain coalescence. The resistance was presumed to stem from the diffusion barrier associated with the rejection of a portion of h-PB originally dissolved in the coronal regions of the micelles during the coalescence process.
The binary blends of a short symmetric PEO-b-PB and a long asymmetric PEO-b-PB have been studied to examine the cocrystallization behavior of the longer and the shorter PEO blocks confined in the lamellar microdomains. Cocrystallization was found to occur over a wide range of undercooling whereas the corresponding blends of PEO homopolymers with similar molecular weights and compositions displayed phase-segregated crystallization. In contrast to the kinetically trapped solid solutions formed in homopolymer blends, the cocrystallization behavior observed here may be driven thermodynamically to attain a lower interfacial energy in the system while allowing the long PB blocks in the asymmetric diblock to relax conformationally.
chapter 1
(1) Inoue, T.; Soen, T.; Hashimoto, T.; Kawai, H. Macromolecules 1970, 3, 87.
(2) Leibler, L.; Pincus, A. Macromolecules 1984, 17, 2922.
(3) Winey, K. I.; Thomas, E. L.; Fetters, L. J. Macromolecules 1991, 24, 6182.
(4) Winey, K. I.; Thomas, E. L.; Fetters, L. J. Macromolecules 1992, 25, 422.
(5) Hashimoto, T.; Koizumi, S.; Hasegawa, H.; Izumitani, T.; Hyde, S. T. Macromolecules 1992, 25, 1433.
(6) Han, C. D.; Baek, D. M.; Kim, J.; Kimishima, K.; Hashimoto, T. Macromolecules 1992, 25, 3052.
(7) Meier, D. J. J. Polym. Sci., part C 1969, 26, 81.
(8) Helfand, E. Macromolecules 1975, 8, 552
(9) Helfand, E.; Wasserman, Z. R. Macromolecules 1976, 9, 879.
(10) Helfand, E.; Wasserman, Z. R. Macromolecules 1978, 11, 960.
(11) Helfand, E.; Wasserman, Z. R. Macromolecules 1980, 13, 994.
(12) Weidisch, R.; Ensslen, M.; Michler, G. H.; Fischer, H.; Macromolecules 1999, 32, 5375.
(13) Discher, B. M.; Won, Y. Y.; Ege, D. S.; Lee, J. C-M.; Bates, F. S.; Discher, D. E.; Hammer, D. A. Science 1999, 284, 1143.
(14) Leibler, L. Macromolecules 1980, 13, 1602.
(15) Hashimoto, T.; Shibayama, M.; Fujimura, M.; Kawai, H. In Block Copolymers-Science and Technology; Meier, D. J., Ed.; Harward Academic Publishers: London, 1983.
(16) Hamley, I. W. The Physics of Block Copolymers; Oxford University Press: New York, 1998.
(17) Bates, F. S.; Fredrickson, G. H. Phys. Today 1999, 52, 32.
(18) Aggarwal, S. L. Polymer 1972, 17, 938.
(19) Sakurai, S.; Kawada, H.; Hashimoto, T.; Fetter, L. J. Macromolecules 1993, 26, 5796.
(20) Matsen, M. W.; Bates, F. S. Macromolecules 1996, 29, 1091.
(21) Hashimoto, T.; Kowsaka, K.; Shibayama, M.; Suehiro, S. Macromolecules 1986, 19, 750.
(22) Hashimoto, T.; Kowsaka, K.; Shibayama, M.; Kawai, H. Macromolecules 1986, 19, 754.
(23) Sakurai, S.; Hashimoto, T.; Fetters, L. J. Macromolecules 1996, 29, 740.
(24) Almdal, K.; Koppi, K. A.; Bates, F. S.; Mortensen, K. Macromolecules 1992, 25, 1743.
(25) Khandpur, A. K.; Fo¨rster, S.; Bates, F. S.; Hamley, I. W.; Ryan, A. J.; Bras, W.; Almdal, K.; Mortensen, K. Macromolecules 1995, 28, 8796.
(26) Hajduk, D. A.; Harper, P. E.; Gruner, S. M.; Honeker, C. C.; Kim, G.; Thomas, E. L.; Fetters, L. J. Macromolecules 1994, 27, 4063.
(27) Hajduk, D. A.; Gruner, S. M.; Rangarajan, P.; Register, R. A.; Fetters, L. J.; Honeker, C.; Albalak, R. J.; Thomas, E. L. Macromolecules 1994, 27, 490.
(28) Vigild, M. E.; Almdal, K.; Mortensen, K.; Hamley, I. W.; Fairclough, J. P. A.; Ryan, A. J. Macromolecules 1998, 31, 5702.
(29) Kimishima, K.; Koga, T.; Hashimoto, T. Macromolecules 2000, 33, 968.
(30) Bates, F. S.; Rosedale, J. H.; Fredrickson, G. H. J. Chem. Phys. 1990, 91, 6255.
(31) Rosedale, J. H.; Bates, F. S. Macromolecules 1990, 23, 2329.
(32) Almdal, K.; Rosedale, J. H.; Bates, F. S.; Wignall, G. D.; Fredrickson, G. H. Phys. Rev. Lett. 1990, 65, 1112.
(33) Mai, S. M.; Fairclough, J. P. A.; Hamley, I. W.; Denny, R. C.; Liao, B.; Booth, C. Ryan, A. J. Macromolecules 1996, 29, 6212.
(34) Han, C. D.; Baek, D. M.; Sakurai, S.; Hashimoto, T. Polym. J. 1989, 21, 841.
(35) Sakamoto, N.; Hashimoto, T. Macromolecules 1995, 28, 6825.
(36) Hashimoto, T.; Ijichi, Y.; Fetters, L. J. J. Chem. Phys. 1988, 89, 2463.
(37) Ijichi, Y.; Hashimoto, T.; Fetters, L. J. Macromolecules 1989, 22, 2817.
(38) Harrats, C.; Fayt, R.; Jerome, R. Polymer 2002, 43, 863.
(39) Jenekhe, S. A.; Chen, X. L. Science, 1999, 283, 372.
(40) Hashimoto, T.; Tsutsumi, K.; Funaki, Y. Langmuir, 1997, 13, 6869.
(41) Thurn-Albrecht, T.; Steiner, R.; DeRouchey, J.; Stafford, C. M.; Huang, E.; Bal, M.; Tuominen, M.; Hawker. C. J.; Russell, T. P. Adv. Mater. 2000, 12, 787.
(42) Urbas, A. M.; Fink, Y.; Thomas, E. L. Macromolecules 1999, 32, 4748.
(43) Urbas, A. M.; Sharp, R.; Fink, Y.; Thomas, E. L.; Xenidou, M.; Fetters, L. J. Adv. Mater. 2000, 12, 812.
(44) Ruokolainen, J.; ten Brinke, G.; Ikkala, O. Adv. Mater. 1999, 11, 777.
(45) Kosonen, H.; Valkama, S.; Hartikainen, J.; Eerikäinen, H.; Torkkeli, M.; Jokela, K.; Serimaa, R.; Sundholm, F.; ten Brinke, G.; Ikkala, O. Macromolecules 2002, 35, 10149.
(46) Ikkala, O.; Ruokolainen, J.; ten Brinke, G.; Torkkeli, M.; Serimaa, R. Macromolecules 1995, 28, 7088.
(47) Mäki-Ontto, R.; de Moel, K.; de Odorico, W.; Ruokolainen, J.; Stamm, M.; ten Brinke, G.; Ikkala, O. Adv. Mater. 2001, 13, 117.
(48) Valkama, S.; Ruotsalainen, T.; Kosonen, H.; Ruokolainen, J.; Torkkeli, M.; Serimaa, R.; ten Brinke, G.; Ikkala, O. Macromolecules 2003, 36, 3986.
(49) Ruokolainen, J.; Mäkinen, R.; Torkkeli, M.; Mäkelä, T.; Serimaa, R.; ten Brinke, G.; Ikkala, O. Science 1998, 280, 557.
(50) Corvazier, L.; Messe, L.; Salou, C. L. O.; Young, R. N.; Fairclough, J. P. A.; Ryan, A. J. J. Mater. Chem. 2001, 11, 2864.
(51) Fink, Y.; Urbas, A. M.; Bawendi, M. G.; Joannopoulos, J. D.; Thomas, E. L. J. Light. Tech. 1999, 17, 1963.
(52) Tanaka, H.; Hashimoto, T. Macromolecules 1991, 24, 5713.
(53) Morrison, F. A.; Winter, H. H. Macromolecules 1989, 22, 3533.
(54) Morrison, F. A.; Winter, H. H.; Gronski, W.; Barnes, J. D. Macromolecules 1990, 23, 4200.
(55) Folkes, M. J.; Keller, A.; Scalisi, F. P. Colloid. Polym. Sci. 1973, 251, 1.
(56) Hadziioannou, G.; Mathis, A.; Skoulis, A. Colloid. Polym. Sci. 1979, 257, 15.
(57) Anastaiadis, S. H.; Russell, T. P.; Satija, S. K.; Majkrzak, C. F. J. Chem. Phys. 1990, 92, 5677.
(58) Amundson, K.; Helfand, E.; Davis, D. D.; Quan, X.; Patel, S.; Smith, S. D. Macromolecules 1991, 24, 6546.
(59) Amundson, K.; Helfand, E.; Davis, D. D.; Quan, X.; Smith, S. D. Macromolecules 1993, 26, 2698.
(60) Amundson, K.; Helfand, E.; Davis, D. D.; Quan, X.; Hudson, S. D.; Smith, S. D. Macromolecules 1994, 27, 6559.
(61) Rosa, C. D.; Park, C.; Lotz, B.; Wittmann, J.-C.; Fetters, L. J.; Thomas, E. L. Macromolecules 2000, 33, 4871.
(62) Rosa, C. D.; Park, C.; Thomas, E. L.; Lotz, B. Nature 2000, 405, 433.
(63) Chen, H.-L., Hsiao, S.-C., Lin, T.-L., Yamauchi, K., Hasegawa, H., Hashimoto, T. Macromolecules 2001, 34, 671.
(64) Lee, W., Chen, H.-L., Lin, T.-L. J. Polym. Sci Part B: Polym. Phys. 2002, 40, 519.
(65) Chen, H.-L., Wu, J.-C., Lin, T.-L., Lin, J. S. Macromolecules 2001, 34, 6936.
(66) Ryan, A. J.; Hamley, I. W.; Bras, W.; Bates, F. S. Macromolecules 1995, 28, 3860.
(67) Shultz, J. M. J. Polym. Sci., Polym. Phys. Ed. 1976, 14, 2291.
(68) Jloudas, G.; Tsitsilianis, C. Macromolecules 1997, 30, 4381.
(69) Hamley, I. W.; Fairclough, J. P. A.; Bates, F. S.; Ryan, A. J. Polymer 1998, 39, 1429.
(70) Rangarajan, P.; Register, R. A.; Adamson, D. H.; Fetters, L. J.; Bras, W.; Naylor, S. Ryan, A. J. Macromolecules 1995, 28, 1422.
(71) Unger, R.; Beyer, D.; Donth, E. Polymer 1991, 32, 3305.
(72) Zhang, G. Y.; Luo, X. L.; Li, C. F.; Ma, D. Z. J. Polym. Sci., Polym. Phys. Ed. 1999, 37, 575.
(73) Zhu, L., Chen, Y., Zhang, A., Calhoun, B. H., Chun, M., Quirk, R. P., Cheng, S. Z. D. Phys. Rev. B. 1999, 60, 10022.
(74) Zhu, L.; Huang, P.; Chen, W. Y.; Ge, Q.; Quirk, R. P.; Cheng, S. Z. D. Macromolecules 2002, 35, 3553.
(75) Zhu, L.; Cheng, S. Z. D.; Calhoun, B. H.; Ge, Q.; Quirk, R. P.; Thomas, E. L.; Hsiao, B. S.; Yeh, F.; Lotz, B. Polymer 2001, 42, 5829.
(76) Cohen, R. E.; Cheng, P. L.; Douzinas, K.; Kofinas, P.; Berney, C. V. Macromolecules 1990, 23, 324.
(77) Loo, Y.-L.; Register, R. A.; Ryan, A. J.; Dee, G. T. Macromolecules 2001, 34, 8968.
(78) Loo, Y.-L.; Register, R. A.; Adason, D. H. Macromolecules 2000, 33, 8361.
(79) Quirm, D. J.; Register, R. A.; Marchand, G. R.; Adamson, D. H. Macromolecules 1998, 31, 4891.
(80) Hamley, I. W.; Fairclough, J. P. A.; Ryan, A. J.; Bates, F. S.; Towns-Andrews, E. Polymer 1996, 37, 4425.
(81) Sakurai, K.; MacKnight, W. J.; Lohse, D. J.; Schultz, D. N.; Sissano, J. A.; Lin, J. S.; Agamalyan, M. Polymer 1996, 37, 4443.
(82) Zhu, L.; Cheng, S. Z. D.; Calhoun, B. H.; Ge, Q.; Quirk, R. P.; Thomas, E. L.; Hsiao, B. S.; Yeh, F.; Lotz, B. J. Am. Chem. Soc. 2000, 122, 5957.
(83) Quirel, D. J., Register, R. A., Marchand, G. R. Macromolecules 1997, 30, 4551.
(84) Quirel, D. J., Register, R. A., Marchand, G. R. Ryan, A. J. Macromolecules 1997, 30, 8338.
(85) Loo, Y.-L.; Register, R. A.; Ryan, A. J. Macromolecules 2002, 35, 2365.
(86) Nojima, S.; Nakano, H.; Ashida, T. Polymer 1993, 34, 4168.
(87) Nojima, S.; Hashizume, K.; Rohadi, A.; Sasaki, S. Polymer 1997, 38, 2711.
(88) Nojima, S.; Nkano, H.; Takahashi, Y.; Ashida, T. Polymer 1994, 35, 3479.
(89) Nojima, S.; Kikuchi, N.; Rohadi, A.; Tanimoto, S.; Sasaki, S. Macromolecules 1999, 32, 3727.
(90) Nojima, S.; Kato, K.; Yamamoto, S.; Ashida, T. Macromolecules 1992, 25, 2237.
(91) Nojima, S.; Tanaka, H.; Rohadi, A.; Sasaki, S. Polymer 1998, 39, 1727.
(92) Nojima, S.; Toei, M.; Hara, S.; Tanimoto, S.; Sasaki, S. Polymer 2002, 43, 4087.
(93) Nojima, S.; Yamamoto, S.; Ashida, T. Polym. J. 1995, 27, 673.
(94) Xu, J. T.; Turner, S. C.; Fairclough, J. P. A.; Mai, S. M.; Ryan, A. J. Macromolecules 2002, 35, 3614.
(95) Douzinas, K. C.; Cohen, R. E. Macromolecules 1992, 25, 5030.
(96) Cohen, R. E.; Bellare, A.; Drzewinski, M. A. Macromolecules 1994, 27, 2321.
(97) Hamley, I. W.; Fairclough, J. P. A.; Terrill, N. J.; Ryan, A. J.; Lipic, P. M.; Bates, F. S.; Towns-Andrews, E. Macromolecules 1996, 29, 8835.
(98) Zhu, L.; Cheng, S. Z. D.; Huang, P.; Ge, Q.; Quirk, R. P.; Thomas, E. L.; Lotz, B.; Hsiao, B. S.; Yeh, F.; Liu, L. Adv. Mater. 2002, 14, 31.
(99) Winey, K. I.; Thomas, E. L.; Fetters, L. J. Macromolecules 1992, 25, 2645.
(100) Adedeji, A.; Jamieson, A. M.; Hudson, S. D. Polymer 1995, 36, 2735.
(101) Hashimoto, T.; Tanaka, H.; Hasegawa, H. Macromolecules 1990, 23, 4378.
(102) Tanaka, H.; Hasegawa, H.; Hashimoto, T. Macromolecules 1991, 24, 240.
(103) Prahsarn, C.; Jamieson, A. M. Polymer 1997, 38, 1273.
(104) Hashimoto, T.; Koizumi, S.; Hasegawa, H. Physica B. 1995, 213&214, 676.
(105) Koizumi, S.; Hasegawa, H.; Hashimoto, T. Makromol. Chem. Macromol. Symp. 1992, 62, 75.
(106) Mayes, A. M.; Russell, T. P.; Satija, S. K.; Majkrzak, C. F. Macromolecules 1992, 25, 6523.
(107) Koizumi, S.; Hasegawa, H.; Hashimoto, T. Macromolecules 1994, 27, 7893.
(108) Matsen, M. W. Macromolecules 1995, 28, 5765.
(109) Matsen, M. W. Phys. Rev. Lett. 1995, 74, 4225.
(110) Koizumi, S.; Hasegawa, H.; Hashimoto, T. Makromol. Chem. Macromol. Symp. 1992, 62, 75
Chapter 2
(1) Leibler, L. Macromolecules 1980, 13, 1602.
(2) Hashimoto, T.; Shibayama, M.; Fujimura, M.; Kawai, H. In Block Copolymers-Science and Technology; Meier, D. J., Ed.; Harward Academic Publishers: London, 1983.
(3) Hamley, I. W. The Physics of Block Copolymers; Oxford University Press: New York, 1998.
(4) Bates, F. S.; Fredrickson, G. H. Phys. Today 1999, 52, 32.
(5) Aggarwal, S. L. Polymer 1972, 17, 938.
(6) Thomas, E. L.; Alward, D. B.; Kinning, D. J.; Martin, D. C.; Handlin, D. L.; Fetter, L. J. Macromolecules 1986, 19, 2197.
(7) Hasegawa, H.; Tanaka, H.; Yamasaki, K.; Hashimoto, T. Macromolecules 1987, 20, 1651.
(8) Hajduk, D. A.; Harper, P. E.; Gruner, S. M.; Honeker, C. C.; Kim, G.; Thomas, E. L. Macromolecules 1994, 27, 4063.
(9) Schultz, M. F.; Bates, F. S.; Almdal, K.; Mortensen, K. Phys. Rev. Lett. 1994, 73, 86.
(10) Matsen, M. W.; Bates, F. S. Macromolecules 1996, 29, 1091.
(11) Semenov, A. N. Macromolecules 1989, 22, 2849.
(12) Brazovskii, A. Soviet Phys. JETP 1975, 41, 85.
(13) Fredrickson, G. H.; Helfand, E. J. Chem. Phys. 1987, 87, 697.
(14) Sakamoto, N.; Hashimoto, T.; Han, C. D.; Kim, D.; Vaidya, N. Y. Macromolecules 1997, 30, 1621.
(15) Sakamoto, N.; Hashimoto, T.; Han, C. D.; Kim, D.; Vaidya, N. Y. Macromolecules 1997, 30, 5321.
(16) Sakamoto, N.; Hashimoto, T. Macromolecules 1998, 31, 8493.
(17) Han, C. D.; Vaidya, N. Y.; Kim, D.; Shin, G.; Yamaguchi, D.; Hashimoto, T. Macromolecules 2000, 33, 3767.
(18) Dormidontava, E. E.; Lodge, T. P. Macromolecules 2001, 34, 9143.
(19) Roe, R. J.; Zin, W. C. Macromolecules 1984, 17, 189.
(20) Hashimoto, T.; Tanaka, H.; Hasegawa, H. Macromolecules 1990, 23, 4387.
(21) Nojima, S.; Roe, R. J.; Rigby, D.; Han, C. C. Macromolecules 1990, 23, 4305.
(22) Tanaka, H.; Hasegawa, H.; Hashimoto, T. Macromolecules 1991, 24, 240.
(23) Winey, K. I.; Thomas, E. L.; Fetters, L. J. Macromolecules 1992, 25, 2645.
(24) Matsen, M. W. Macromolecules 1995, 28, 5765.
(25) Matsen, M. W. Phys. Rev. Lett. 1995, 74, 4225.
(26) Leibler, L.; Pincus, P. A. Macromolecules 1984, 17, 2922.
(27) Semenov, A. N. Macromolecules 1993, 26, 2273.
(28) McConnell, G. A.; Gast, A. P.; Huang, J. S.; Smith, S. D. Phys. Rev. Lett. 1993, 71, 2102.
(29) Berret, J. F.; Molino, F.; Porte, G.; Diat, O.; Lindner, P. J. J. Phys. Cond. Matter 1996, 8, 9513.
(30) Diat, O.; Porte, G.; Berret, J. F. Phys. Rev. B 1996, 54, 14869.
(31) Pople, J. A.; Hamley, I. W.; Fairclough, J. P. A.; Ryan, A. J.; Komanschek, B. U.; Gleeson, A. J.; Yu, G.-E.; Booth, C. Macromolecules 1997, 30, 5721.
(32) Hanley, K. J.; Lodge, T. P.; Huang, C.-I. Macromolecules 2000, 33, 5918.
(33) Chen, H.-L.; Wu, J.-C.; Lin, T.-L.; Lin, J. S. Macromolecules 2001, 34, 6936.
(34) Hashimoto, T.; Kowaska, K.; Shibayama, M.; Suehiro, S. Macromolecules 1986, 19, 750.
(35) Chen, H.-L.; Hsiao, S.-C.; Lin, T.-L.; Yamauchi, K.; Hasegawa, H.; Hashimoto, T. Macromolecules 2001, 34, 671.
(36) Medellin-Rodriguez, F. J.; Philips, P. J.; Lin, J. S. Macromolecules 1996, 29, 7491.
(37) Chen, H.-L.; Li, H.-C.; Huang, Y.-Y.; Chiu, F.-C. Macromolecules 2002, 35, 2417.
(38) Cullity, B. D.; Stock, S. R Elements of X-ray Diffraction; Prentice Hall: Upper Saddle River, NJ, 2001; Chapter 10.
(39) Nishikawa, Y.; Kawada, H.; Hasegawa, H.; Hashimoto, T. Acta Polym. 1993, 44, 247.
(40) Nishikawa, Y. Interfacial Curvatures of Bicontinuous Phase Structures in Two-Component Polymeric Systems. Ph.D. Thesis, Kyoto University 1999.
(41) Nishikawa, Y.; Hasegawa, H.; Hashimoto, T.; Hyde, S. T. To be submitted for publication.
(42) Matsen, M. W.; Bates, F. S. J. Chem. Phys. 1997, 106, 2436.
(43) Koga, T.; Koga, T.; Hashimoto, T. J. Chem. Phys. 1999, 110, 11076.
(44) Hashimoto, T.; Koga, T.; Koga, T.; Sakamoto, N. In The Physics of Complex Liquids; Yonezawa, F., Tsuji, K., Kaji, K., Doi, M., Fujiwara, T., Eds.; World Sci.: Singapore, 1988; p 291.
(45) Ohta, T.; Kawasaki, K. Macromolecules 1986, 19, 2621.
(46) Bonse, U.; Hart, M. Appl. Phys. Lett. 1965, 7, 238.
(47) Sakamoto, N.; Hashimoto, T. Macromolecules 1995, 28, 6825.
(48) Roe, R. J. Methods Of X-Ray And Neutron Scattering In Polymer Science ; Oxford University Press: New York, 2000.
(49) Han, C. D.; Baek, D. M.; Kim, J. K. Macromolecules 1990, 23, 561.
(50) Likos, C. N.; Lowen, H.; Poppe, A.; Willner, L.; Roovers, J.; Cubitt, B.; Richter, D. Phys. Rev. E 1998, 58, 6299.
(51) Zhu, L.; Cheng, S. Z. D.; Calhoun. B. H.; Ge, Q.; Quirk, R. P.; Thomas, E. L.; Hsiao, B. S.; Yeh, F.; Lotz, B. Polymer 2001, 42, 5829.
(52) Fredrickson, G. H.; Helfand, E. J. Chem. Phys. 1987, 87, 697.
Chapter 3
(1) Leibler, L. Macromolecules 1980, 13, 1602.
(2) Hashimoto, T.; Shibayama, M.; Fujimura, M.; Kawai, H. In Block Copolymer-Science and Technology, Meier, D. J. Ed.; Harward Academic Publishers: London, 1983.
(3) Hamley, I. W. The Physics of Block Copolymers, Oxford University Press: New York, 1998.
(4) Thomas, E. L.; Alward, D. B.; Kinning, D. J.; Martin, D. C.; Handlin, D. L.; Fetters, L. J. Macromolecules 1986, 19, 2197.
(5) Hasegawa, H.; Tanaka, H.; Yamasaki, K.; Hashimoto, T. Macromolecules 1987, 20, 1651.
(6) Hajduk, D. A.; Harper, P. E.; Gruner, S. M.; Honeker, C. C.; Kim, G..; Thomas, E. L.; Fetters, L. J. Macromolecules 1994, 27, 4063.
(7) Roe, R. J.; Zin, W. C. Macromolecules 1984, 17, 189.
(8) Hashimoto, T.; Tanaka, H.; Hasegawa, H. Macromolecules 1990, 23, 4387.
(9) Nojima, S.; Roe, R. J.; Rigby, D.; Han, C. C. Macromolecules 1990, 23, 4305.
(10) Winey, K. I.; Thomas, E. L.; Fetters, L. J. Macromolecules 1992, 25, 2645.
(11) Matsen, M. W.; Bates, F. S. Macromolecules 1996, 29, 1091.
(12) Semenov, A. N. Macromolecules 1989, 22, 2849.
(13) Dormidontova, E. E.; Lodge, T. P. Macromolecules 2001, 34, 9143.
(14) Schwab, M.; Stühn, B. Phys. Rev. Lett. 1996, 76, 924.
(15) Sakamoto, N.; Hashimoto, T.; Han, C. D.; Kim, D.; Vaidya, N. Y. Macromolecules 1997, 30, 1621.
(16) Sakamoto, N.; Hashimoto, T. Macromolecules 1998, 31, 8493.
(17) Han, C. D.; Vaidya, N. Y.; Kim, D.; Shin, G.; Yamaguchi, D.; Hashimoto, T. Macromolecules 2000, 33, 3767.
(18) Choi, S.; Lee, K. M.; Han, C. D.; Sota, N.; Hashimoto, T. Macromolecules 2003, 36, 793.
(19) Matsen, M. W. Macromolecules 1995, 28, 5765.
(20) Matsen, M. W. Phys. Rev. Lett. 1995, 74, 4225.
(21) Huang, Y.-Y.; Chen, H.-L.; Hashimoto, T. Macromolecules 2003, 36, 764.
(22) Hamley, I. W.; Daniel, C.; Mingvanish, W.; Mai, S.-M.; Booth, C.; Messe, L.; Ryan, A. J. Langmuir 2000, 16, 2508.
(23) Hamley, I. W.; Pople, J. A.; Diat, O. Colloid Polym. Sci. 1998, 276, 446.
(24) Bang, J.; Lodge, T. P.; Wang, X.; Brinker, K. L.; Burghardt, W. R. Phys. Rev. Lett. 2002, 89, 215505
(25) McConnell, G. A.; Gast, A. P.; Huang, J. S.; Smith, S. D. Phys Rev. Lett. 1993, 71, 2102.
(26) Pople, J. A.; Hamley, I. W.; Fairclough, J. P. A.; Ryan, A. J.; Komanschek, B. U.; Gleeson, A. J.; Yu, G.-E.; Booth, C. Macromolecules 1997, 30, 5721.
(27) Diat, O.; Porte, G.; Berret, J. F. Phys. Rev. B 1996, 54, 14869.
(28) Berret, J. F.; Molino, F.; Porte, G.; Diat, O.; Lindner, P. J. J. Phys. Cond. Matter 1996, 8, 9513.
(29) Hanley, K. J.; Lodge, T. P.; Huang, C.-I. Macromolecules 2000, 33, 5918.
(30) Hashimoto, T.; Kowaska, K.; Shibayama, M.; Suehiro, S. Macromolecules 1986, 19, 750.
(31) Cullity, B. D.; Stock, S. R. Elements of X-ray Diffraction. Prentice Hall, Upper Saddle River, NJ, 2001, Ch 10.
(32) The (2)1/2 peak associated with the BCC lattice is weak in the scattering profiles presented here. In this case, one might speculate that the system adopts hexagonally-packed cylinder (HEX) morphology because the lattice peaks associated with this structure follows the relative positions of 1: (3)1/2: (4)1/2:. However, the spherical geometry and BCC packing of the microdomains in the blend quenched from the temperatures where BCC phase was assigned from the SAXS profiles were unambiguously verified by TEM. Moreover, we have also calculated the volume fraction of PEO domains using the SAXS data at these temperatures with the assumptions of BCC and HEX morphology. The volume fraction obtained by assuming BCC packing always agreed well (within 11 %) with the real volume fraction of PEO (i.e., fPEO = 0.17), whereas that calculated by assuming HEX packing was always more than 71 % higher.
(33) Matsen, M. W.; Bates, F. S. J. Chem. Phys. 1997, 106, 2436.
(34) The Wigner-Seitz (W-S) cell may be constructed according to the following four steps. First, select any lattice site as the origin. Second, start at the origin followed by drawing lines to all its neighboring lattice point. Third, draw the perpendicular bisecting plane of each of these lines. Finally, the space enclosed by the resulting polyhedron is the W-S cell. For block copolymers the W-S cell represents the space occupied by a single micelle in a lattice. It is a rhombic dodecahedron for FCC lattice and a truncated octahedron for BCC phase.
(35) Wigner, E.; Seitz, F. Phys. Rev. 1933, 43, 804.
(36) Fredrickson, G. H. Macromolecules 1993, 26, 4351.
(37) Bowen, W. R.; Jenner, F. Chem. Eng. Sci. 1995, 50, 1707.
(38) Lescanec, R. L.; Fetters, L. J.; Thomas, E. L. Macromolecules 1998, 31, 1680.
(39) (a) Hashimoto, T.; Fujimura, M.; Kawai, H. Macromolecules 1980, 13, 1660. (b) Shibayama, M.; Hashimoto, T.; Kawai, H. Macromolecules 1983, 16, 1434. (c) Mori, K.; Hasegawa, H.; Hashimoto, T. Polymer 1990, 31, 2368.
(40) Sakurai, S.; Umeda, H.; Taie, K.; Nomura, S. J. Chem. Phys. 1996, 105, 8902.
(41) Funaki, Y.; Kumano, K.; Nakao, T.; Jinnai, H.; Yoshida, H.; Kimishima, K.; Tsutsumi, K.; Hirokama, Y.; Hashimoto, T. Polymer 1999, 40, 7147.
(42) Brandrup, J.; Immergut, E. H. Polymer Handbook. 2nd edition, John Wiley & Sons Inc., 1975, Part IV.
(43) The dilution approximation treats concentrated solutions as uniformly swollen melt phases and the phase behavior maps onto those of melts by replacing □ by □□P. This mean-field approximation is good enough for our qualitative interpretation on the increase of segregation strength with increase of block copolymer concentration during solvent removal.
(44) Chen H.-L.; Li, H.-C.; Huang, Y.-Y.; Chiu, F.-C. Macromolecules 2002, 35, 2417.
Chapter 4
(1) Hirata, H.; Ijutsu, T.; Soen, T.; Hashimoto, T.; Kawai, H. Polymer 1975, 16, 249.
(2) Nojima, S.; Kato, K.; Yamamoto, S.; Ashida, T. Macromolecules 1992, 25, 2237.
(3) Nojima, S.; Nakano, H.; Ashida, T. Polymer 1993, 34, 4168.
(4) Rangarajan, P.; Register, R. A.; Fetters, L. J. Macromolecules 1993, 26, 4640.
(5) Nojima, S.; Nakano, H.; Takahashi, Y.; Ashida, T. Polymer 1994, 35, 3479.
(6) Nojima, S.; Yamamoto, S.; Ashida, T. Polym. J. 1995, 27, 673.
(7) Rangarajan, P.; Register, R. A.; Fetters, L. J.; Naylor, S.; Ryan, A. J. Macromolecules 1995, 28, 1422.
(8) Ryan, A. J.; Hamley, I. W.; Bras, W.; Bates, F. S. Macromolecules 1995, 28, 3860.
(9) Schnablegger, H.; Rein, D. H.; Rempp, P.; Cohen, R. E. J. Polym. Eng. 1996, 16, 1.
(10) Nojima, S.; Hashizume, K.; Rohadi, A.; Sasaki, S. Polymer 1997, 38, 2716.
(11) Ryan, A. J.; Fairclough, J. P. A.; Hamley, I. W.; Mai, S.-M.; Booth, C. Macromolecules 1997, 30, 1723.
(12) Quiram, D. J.; Register, R. A.; Marchand, G. R.; Ryan, A. J. Macromolecules 1997, 30, 8338.
(13) Zhu, L.; Chen, Y.; Zhang, A.; Calhoun, B. H.; Chun, M.; Quirk, R. P.; Cheng, S. Z. D.; Hsiao, B. S.; Yeh, F.; Hashimoto, T. Phys. Rev. B 1999, 60, 10022.
(14) Chen, H.-L.; Wu, J.-C.; Lin, T.-L.; Lin, J. S. Macromolecules 2001, 34, 6936.
(15) Chen, H.-L.; Hsiao, S.-C.; Lin, T.-L.; Yamauchi, K.; Hasegawa, H.; Hashimoto, T. Macromolecules 2001, 34, 671.
(16) Winey, K. I.; Thomas, E. L.; Fetters, L. Macromolecules 1992, 25, 2645.
(17) Tanaka, H.; Hasegawa, H.; Hashimoto, T. Macromolecules 1991, 24, 240.
(18) Medellin-Rodriguez, F. J.; Philips, P. J.; Lin, J. S. Macromolecules 1996, 29, 7491.
(19) Loo, Y.-L.; Register, R. A.; Ryan, A. J. Phys. Rev. Lett. 2000, 84, 4120.
(20) Chen, H.-L.; Huang, Y.-Y.; Hashimoto, T., manuscript in preparation.
(21) Roe, R.-J. Methods of X-ray and Neutron Scattering in Polymer Science; Oxford University Press: New York, 2000.
(22) Hashimoto, T.; Tanaka, H.; Hasegawa, H. Macromolecules 1990, 23, 4378.
(23) Polymer Handbook, 3rd ed.; Brandrup, J., Immergut, E. H., Eds.; Wiley: New York, 1989.
(24) Feigin, L. A.; Svergun, D. I. Structure Analysis by Small- Angle X-ray and Neutron Scattering; Plenum Press: New York, 1987.
Chapter 5
(1) Leibler, L. Macromolecules 1980, 13, 1602.
(2) Hashimoto, T.; Shibayama, M.; Fujimura, M.; Kawai, H. In Block Copolymers-Science and Technology; Meier, D. J., Ed.; Harward Academic Publishers: London, 1983.
(3) Hamley, I. W. The Physics of Block Copolymers; Oxford University Press: New York, 1998.
(4) Bates, F. S.; Fredrickson, G. H. Phys. Today 1999, 52, 32.
(5) Roe, R. J.; Zin, W. C. Macromolecules 1984, 17, 189.
(6) Hashimoto, T.; Tanaka, H.; Hasegawa, H. Macromolecules 1990, 23, 4387.
(7) Nojima, S.; Roe, R. J.; Rigby, D.; Han, C. C. Macromolecules 1990, 23, 4305.
(8) Tanaka, H.; Hasegawa, H.; Hashimoto, T. Macromolecules 1991, 24, 240.
(9) Winey, K. I.; Thomas, E. L.; Fetters, L. J. Macromolecules 1992, 25, 2645.
(10) Cohen, R. E.; Cheng, P. L.; Douzinas, K.; Kofinas, P.; Berney, C. V. Macromolecules 1990, 23, 324.
(11) Nojima, S.; Kato, K.; Yamamoto, S.; Ashida, T. Macromolecules 1992, 25, 2237.
(12) Nojima, S.; Nakano, H.; Takahashi, Y.; Ashida, T. Polymer 1994, 35, 3479.
(13) Ryan, A. J.; Hamley, I. W.; Bras, W.; Bates, F. S. Macromolecules 1995, 28, 3860.
(14) Schnablegger, H.; Rein, D. H.; Rempp, P.; Cohen, R. E. J. Polym. Eng. 1996, 16, 1.
(15) Nojima, S.; Tanaka, H.; Rohadi, A.; Sasaki, S. Polymer 1998, 39, 1727.
(16) Zhu, L.; Chen, Y.; Zhang, A.; Calhoun, B. H.; Chun, M.; Quirk, R. P.; Cheng, S. Z. D.; Hsiao, B. S.; Yeh, F.; Hashimoto, T. Phys. Rev. B 1999, 60, 10022.
(17) Loo, Y.-L.; Register, R. A.; Adamson, D. H. J. Polym. Sci., Polym. Phys. Ed. 2000, 38, 2564.
(18) Chen, H. L.; Wu, J. C.; Lin, T. L.; Lin, J. S. Macromolecules 2001, 34, 6936.
(19) Loo, Y.-L.; Register, R. A.; Ryan, A. J. Macromolecules 2002, 35, 2365.
(20) Chen, H.-L.; Li, H.-C.; Huang, Y.-Y.; Chiu, F.-C. Macromolecules 2002, 35, 2417.
(21) Quiram, D. J.; Register, R. A.; Marchand, G. R. Macromolecules 1997, 30, 4551.
(22) Sakurai, S.; Kawada, H.; Hashimoto, T.; Fetters, L. J. Macromolecules 1993, 26, 5796.
(23) Kimishima, K.; Koga, T.; Hashimoto, T. Macromolecules 2000, 33, 968.
(24) Feigin, L. A.; Svergun, D. I. Structure Analysis by Small- Angle X-Ray and Neutron Scattering; Plenum Press: New York, 1987.
(25) Cullity, B. D.; Stock, S. R Elements of X-Ray Diffraction; Prentice Hall: Upper Saddle River, NJ, 2001; Chapter 10.
(26) Hong, S.; Yang, L.; MacKnight, W. J.; Gido, S. P. Macromolecules 2001, 34, 7009.
Chapter 6
(1) Hamley, I. W. The Physics of Block Copolymers; Oxford University Press: New York, 1998.
(2) Weimann, P. A.; Hajduk, D. A.; Chu, C.; Chaffin, K. A.; Brodil, J. C.; Bates, F. S. J. Polym. Sci. Part B: Poly. Phys. 1999, 37, 2053.
(3) Chen, H.-L.; Hsiao, S.-C.; Lin, T.-L.; Yamauchi, K.; Hasegawa, H.; Hashimoto, T. Macromolecules 2001, 34, 671.
(4) Chen, H.-L.; Wu, J.-C.; Lin, T.-L.; Lin, J. S. Macromolecules 2001, 34, 6936.
(5) Loo, Y.-L.; Register, R. A.; Ryan, A. J.; Dee, G. T. Macromolecules 2001, 34, 8968.
(6) Xu, J.-T.; Turner, S. C.; Fairclough, J. P. A.; Mai, S.-M.; Ryan, A. J.; Chainbundit, C.; Booth, C. Macromolecules 2002, 35, 3614.
(7) Xu, J.-T.; Fairclough, J. P. A.; Mai, S.-M.; Ryan, A. J. Chainbundit, C. Macromolecules 2002, 35, 6937.
(8) Lee, W.; Chen, H.-L.; Lin, T.-L. J. Polym. Sci Part B: Polym. Phys. 2002, 40, 519.
(9) Douzinas, K. C.; Cohen, R. E. Macromolecules 1992, 25, 5030.
(10) Cohen, R. E.; Bellare, A.; Drzewinski, M. A. 1994, 27, 2321.
(11) Hamley, I. W.; Fairclough, J. P. A.; Ryan, A. J.; Bates, F. S.; Towns-Andrews, E. Polymer 1996, 37, 4425.
(12) Cohen, R. E.; Cheng, P. L.; Douzinas, K.; Kofinas, P.; Berney, C. V. Macromolecules 1990, 23, 324.
(13) Nojima, S.; Kikuchi, N.; Rohadi, A.; Tanimoto, S.; Sasaki, S. Macromolecules 1999, 32, 3727.
(14) Schnablegger, H.; Rein, D. H.; Rempp, P.; Cohen, R. E. J. Polym. Eng. 1996, 16, 1.
(15) Lotz, B.; Kovacs, A. J. ACS Polym. Prepr 1969, 10, 820.
(16) Zhu, L.; Huang, P.; Chen, W. Y.; Ge, Q.; Quirk, R. P.; Cheng, S. Z. D.; Thomas, E. L.; Lotz, B.; Hsiao, B. S.; Yeh, F.; Liu, L. Macromolecules 2002, 35, 3553.
(17) Zhu, L.; Cheng, S. Z. D.; Calhoun, B. H.; Ge, Q.; Quirk, R. P.; Thomas, E. L.; Hsiao, B. S.; Yeh, F.; Lotz, B. Polymer 2001, 42, 5829.
(18) Zhu, L.; Chen, Y.; Zhang, A.; Calhoun, B. H.; Chun, M.; Quirk, R. P.; Cheng, S. Z. D.; Hsiao, B. S.; Yeh, F.; Hashimoto, T. Phys. Rev. B 1999, 60, 10022.
(19) Zhu, L.; Mimnaugh, B. R.; Ge, Q.; Quirk, R. P.; Cheng, S. Z. D.; Thomas, E. L.; Lotz, B.; Hsiao, B. S.; Yeh, F.; Liu, L. Polymer 2001, 42, 9121.
(20) Loo, Y.-L.; Register, R. A.; Ryan, A. J. Phys. Rev. Lett. 2000, 84, 4120.
(21) Loo, Y.-L.; Register, R. A.; Ryan, A. J. Macromolecules 2002, 35, 2365.
(22) Muller, A. J.; Balsamo, V.; Arnal, M. L.; Jakob, T.; Schmalz. H.; Abetz, V. Macromolecules 2002, 35, 3048.
(23) Chen, H.-L.; Lin, S.-Y.; Huang, Y.-Y.; Chiu, F.-C.; Liou, W.; Lin, J. S. Macromolecules 2002, 35, 9434.
(24) Quiram, D. J.; Register, R. A.; Marchand, G. R.; Adamson, D. H. Macromolecules 1998, 31, 4891.
(25) Hamley, I. W.; Fairclough, J. P. A.; Terrill, N. J.; Ryan, A. J.; Lipic, P. M.; Bates, F. S.; Towns-Andrews, E. Macromolecules 1996, 29, 8835.
(26) Zhu, L.; Cheng, S. Z. D.; Calhoun, B. H.; Ge, Q.; Quirk, R. P.; Thomas, E. L.; Hsiao, B. S.; Yeh. F.; Lotz, B.; J. Am. Chem. Soc. 2000, 122, 5957.
(27) Zhu, L.; Cheng, S. Z. D.; Huang, P.; Ge, Q.; Quirk, R. P.; Thomas, E. L.; Lotz, B.; Hsiao, B. S.; Yeh. F.; Liu, L. Adv. Mater. 2002, 14, 31
(28) Nojima, S.; Kato, K.; Yamamoto, S.; Ashida, T. Macromolecules 1992, 25, 2237.
(29) Nojima, S.; Nkano, H.; Takahashi, Y.; Ashida, T. Polymer 1994, 35, 3479.
(30) Nojima, S.; Nkano, H.; Ashida, T. Polymer 1993, 34, 4168.
(31) Nojima, S.; Yamamoto, S.; Ashida, T. Polym. J. 1995, 27, 673.
(32) Chen, H.-L.; Li, H.-C.; Huang, Y.-Y.; Chiu, F.-C. Macromolecules 2002, 35, 2417.
(33) Balsamo, V; von Gyldenfeldt, F.; Stadler, R. Macromolecules 1999, 32, 1226.
(34) Huang, Y.-Y.; Chen, H.-L.; Li, H.-C.; Lin, T.-L.; Lin, J. S. Macromolecules 2003, 36, 282.
(35) Winey, K. I.; Thomas, E. L.; Fetter, L. J. Macromolecules 1992, 25, 2645.
(36) Hashimoto, T.; Tanaka, H.; Hasegawa, H. Macromolecules 1990, 23, 4378.
(37) Tanaka, H.; Hasegawa, H.; Hashimoto, T. Macromolecules 1991, 24, 240.
(38) Huang, Y.-Y.; Chen, H.-L.; Hashimoto, T. Macromolecules 2003, 36, 764.
(39) Feigin, L. A.; Svergun, D. I. Structure Analysis by Small- Angle X-ray and Neutron Scattering; Plenum Press: New York, 1987.
(40) Leibler, L.; Pincus, P. A. Macromolecules 1984, 17, 2922.
(41) Helfand, E.; Sapse, A. M. J. Chem. Phys. 1975, 62, 1327.
(42) Helfand, E.; Tagami, Y. J. Chem. Phys. 1972, 56, 3592.
Huang, Y.-Y. Ph. D. thesis, National Tsing Hua Univ., 2004.
Chapter 7
(1) Smith, P.; Manley, R. Macromolecules 1979, 12, 483.
(2) Chen, H.-L.; Hsiao, S.-C.; Lin, T.-L.; Yamauchi, K.; Hasegawa, H.; Hashimoto, T. Macromolecules 2001, 34, 671.
(3) Chen, H.-L.; Wu, J.-C.; Lin, T.-L.; Lin, J. S. Macromolecules 2001, 34, 6936.
(4) Loo, Y.-L.; Register, R. A.; Ryan, A. J.; Dee, G. T. Macromolecules 2001, 34, 8968.
(5) Xu, J.-T.; Fairclough, J. P. A.; Mai, S.-M.; Ryan, A. J.; Chainbundit, C. Macromolecules 2002, 35, 6937.
(6) Shi, A.-C.; Noolandi, J. Macromolecules 1994, 27, 2936.
(7) Hashimoto, T.; Koizumi, S.; Hasegawa, H. Macromolecules 1994, 27, 1562.
(8) Shi, A.-C.; Noolandi, J. Macromolecules 1995, 28, 3103.
(9) Zhao, J.; Majumdar, B.; Schulz, M. F.; Bates, F. S.; Almdal, K.; Mortensen, K.; Hajduk, D. A.; Gruner, S. M. Macromolecules 1996, 29, 1204.
(10) Sakurai, S.; Irie, H.; Umeda, H.; Nomura, S.; Lee, H. H.; Kim, J. K. Macromolecules 1998, 31, 336.
(11) Court, F.; Hashimoto, T. Macromolecules 2001, 34, 2536.
(12) Court, F.; Hashimoto, T. Macromolecules 2002, 35, 2566.
(13) Prud’homme, R. E. J. Polym. Sci., Part B: Polym Phys. 1982, 20, 307.
(14) (a) Cheng, S. Z. D.; Wunderlich, B. J. Polym. Sci., Part B: Polym. Phys. 1986, 24, 577. (b) Cheng, S. Z. D.; Wunderlich, B. J. Polym. Sci., Part B: Polym. Phys. 1986, 24, 595. (c) Cheng, S. Z. D.; Wunderlich, B. J. Polym. Sci., Part B: Polym. Phys. 1988, 26, 1947.
(15) Balijepalli, S.; Schultz, J. M.; Lin, J. S. Macromolecules 1996, 29, 6601.
(16) The model structures are drawn based on the SAXS results of the isothermally crystallized diblock blends from which the PEO lamellar thickness was calculated to be ca. 10.8 nm. Assuming that crystalline stems orient perpendicular to the interface,17 this gives a once folded and triply folded chain structure for the shorter (extended chain length = 22.15 nm) and the longer (extended chain length = 47.47nm) PEO blocks in E80B481 and E170B102, respectively.
(17) DiMarzio, E. A.; Guttman, C. M.; Hoffman, J. D. Macromolecules 1980, 13, 1194.
(18) Whitmore, M. D.; Noolandi, J. Macromolecules 1988, 21, 1482.