研究生: |
梁以晴 Liang, Yi Ching |
---|---|
論文名稱: |
硫化物奈米結構與多壁奈米碳管在葡萄糖生物感測器之應用 Applications of Multi-Wall Carbon Nanotubes and Sulfide Nanostructure on Sensing Glucose |
指導教授: |
呂世源
Lu, Shih Yuan |
口試委員: |
衛子健
蔡德豪 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 中文 |
論文頁數: | 63 |
中文關鍵詞: | 葡萄糖感測器 、二硫化錫 |
外文關鍵詞: | glucose biosensor, SnS2 |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
自1962年Clark提出第一代葡萄糖感測器開始,為了追求更高的靈敏度與專一性,目前已經發展至第三代感測器,其主要利用direct electron transfer方式,直接針對葡萄糖進行感測。做為一個理想的葡萄糖感測元件,除了需要具備良好的材料穩定性與專一性之外,其優異的親水性、電子傳遞能力與反應物接觸面積,亦為重要因素。良好的親水性可以促進glucose oxidase (GOD)與葡萄糖水溶液間的反應,優良的電子傳遞能力可以放大GOD中心的反應訊號,較大的反應物接觸面積可以增加GOD與葡萄糖接觸的機會。目前大部分的研究多以葡萄糖氧化酶做為感測酵素,雖然在適當操作條件下,有不錯的材料穩定性與專一性,但在親水性與電子傳遞能力上,仍有很大的進步空間。為了有效提升GOD在葡萄糖感測器上的偵測效能,本研究藉混和一低成本、無毒且高親水性之片狀二硫化錫於GOD薄膜中,除了能大幅改善GOD薄膜之整體親水性外,更可利用二硫化錫本身特殊的二維片狀結構,來加強電子傳遞能力與提升GOD與葡萄糖的接觸機會[1]。
本研究使用水熱法,以SnCl4‧5H2O和C2H5NS做為反應前驅物,於160℃下持溫12小時,成功合成出一尺寸約934±804 nm之片狀二硫化錫奈米結構,並以超聲均質法,進行片狀二硫化錫之剝層程序。剝層後之片狀二硫化錫尺寸約24±8 nm,接觸角約8.71∘,進而將所剝層之片狀二硫化錫,混摻約0.1 mg至GOD薄膜,大幅降低GOD整體薄膜之接觸角,自26.9∘降低至4.06∘,同時也明顯提升葡萄糖感測效能,靈敏度自16.3 μA/mM cm2提升至28.9 μA/mM cm2,線性範圍從0.0625至1.5 mM提升0.0625至2.8 mM,偵測極限從0.0625 mM降至0.0125mM。這樣的增益表現,相較過去數年,進行第三代葡萄糖感測器研究的結果,發現使用剝層二硫化錫,所提升之整體感測效能,屬一具有相當競爭力的突破結果。
There are more and more people getting diabetes all over the world and the patients suffer from bad life quality because of the fluctuating blood glucose concentration. To fabricate a good glucose biosensor, there are several criteria to be satisfied. The stability and specificity of the sensor itself, control of hydrophilicity for good electron transfer ability and larger surface areas are the key points to improve the sensing results. Glucose oxidase is an enzyme specifically binding with glucose and is usually used to sense blood glucose. This study aims to combine a cheap, stable and non-toxic SnS2 with multi-wall carbon nanotubes (MWCNT) to improve the sensitivity toward glucose. SnS2 is a layer structure material. The van der Waals force between the layers can be separated and thus the material exfoliated with ultrasonication. After centrifuguration in 13500 rpm, the size and thickness of the exfoliated SnS2 (E-SnS2) collected from the top portion become smaller so the surface area is much larger at the same concentration.
X-ray diffraction (XRD), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) are used to characterize E-SnS2. TEM images show the same crystal lattice (001), (110) and (100), echoing the results in XRD. The binding energies of electrons match those of the database of SnS2. The atomic proportion of Sn and S is approximately 1:2 from scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDX). The thickness of SnS2 decreases from 36, 43 nm to 8.2 nm as measured by an atomic force microscope (AFM) and the size also decreases from 934±804 nm to 24±8 nm as estimated from SEM images.
The current density in cyclic voltammetry of the redox reaction increases when the E-SnS2 is added. The current becomes larger when the scan rate increases which means that the electrochemical reaction is a surface control process. The most important goal in biosensor is sensitivity. This work achieved a high sensitivity of 28.9 μA/mM cm2, which shows a great improvement in sensing ability. The linear range is from 0.0625 to 2.8 mM and the detection limit is 0.0125 mM.
1. Jing, Y., et al., Graphene, inorganic graphene analogs and their composites for lithium ion batteries. Journal of Materials Chemistry A, 2014. 2(31): p. 12104.
2. 國家福利衛生部統計處, 民國102年主要死因分析. 2013.
3. Clark, L.C., Jr., Monitor and control of blood tissue O2 tensions. Transactions - American Society for Artificial Internal Organs, 1956. 2(1): p. 41-48.
4. Leland C. Clark, J., and Champ Lyons, Electrode System for Continuous Monitoring in Cardiovascular Surgery. Annals of the New York Academy of Sciences, 1962. 102(1): p. 29-45.
5. Turner, J.D.N.A.P.F., Home Blood Glucose Biosensors: A Commercial Perspective. Biosensors and Bioelectronics, 2005. 20(12): p. 2435-2453.
6. Thévenot DR, T.K., Durst RA, Wilson GS., Electrochemical Biosensors: Recommended Definition and Classificaiton. Pure Applification chemistry, 1999. 71(12): p. 2333-2348.
7. Dorothee Grieshaber, et al., Electrochemical Biosensors - Sensor Principles and Architectures. Sensors, 2008. 8: p. 1400-1458.
8. About Diabetes. World Health Organization, 2014.
9. Hirsch, I.B., Practical Management Of Type 1 Diabetes. Professional Communications. ISBN 978-1884735943., 2005.
10. Ripsin CM, K.H., Urban RJ., Management of Blood Glucose in Type 2 Diabetes Mellitus. American Academy of Family Physicians, 2009. 79(1): p. 29-36.
11. Metzger BE, C.D., Summary and recommendations of the Fourth International Workshop-Conference on Gestational Diabetes Mellitus. The Organizing Committee. Diabetes Care, 1998. 21(2): p. B162-B167.
12. Katz, E., L. Sheeney-Haj-Ichia, and I. Willner, Electrical contacting of glucose oxidase in a redox-active rotaxane configuration. Angew Chem Int Ed Engl, 2004. 43(25): p. 3292-300.
13. Patolsky, F., Y. Weizmann, and I. Willner, Long-range electrical contacting of redox enzymes by SWCNT connectors. Angew Chem Int Ed Engl, 2004. 43(16): p. 2113-7.
14. www-biol.paisley.ac.uk.
15. Zhong, H., et al., Vertically Aligned Graphene-Like SnS2Ultrathin Nanosheet Arrays: Excellent Energy Storage, Catalysis, Photoconduction, and Field-Emitting Performances. The Journal of Physical Chemistry C, 2012. 116(16): p. 9319-9326.
16. Zhai, C., N. Du, and H.Z. Yang, Large-scale synthesis of ultrathin hexagonal tin disulfide nanosheets with highly reversible lithium storage. Chemical communications (Cambridge, England), 2011. 47(4): p. 1270-2.
17. Wang, T., et al., Biosensor based on ultrasmall MoS2 nanoparticles for electrochemical detection of H2O2 released by cells at the nanomolar level. Anal Chem, 2013. 85(21): p. 10289-95.
18. O. Antoine, R.D., RRDE study of oxygen reduction on Pt nanoparticles inside Na: H2O2 production in PEMFC cathode conditions. Journal of Applied Electrochemistry, 2000. 30: p. 839-844.
19. Kanungo, S.B., Physicochemical properties of MnO2 and MnO2/CuO and their relationship with the catalytic activity for H2O2 decomposition and CO oxidation. Journal of Catalysis, 1979. 58: p. 419-435.
20. Takahashi, S.A., Nao. Anzai, Jun-ichi, Redox Response of Reduced Graphene Oxide-Modified Glassy Carbon Electrodes to Hydrogen Peroxide and Hydrazine. Materials, 2013. 6(5): p. 1840-1850.
21. P. N. Bartlett, A.a.V.E.-F., Electrochemical lmmobilisation of Enzymes Part 4.-Co-immobilisation of Glucose Oxidase and Ferro/Ferricyanide in Poly(N-methylpyrrole) Films. Journal of the Chemical Society, Faraday Transactions, 1992. 88(18): p. 2677-2683.
22. Wang, J., Electrochemical Glucose Biosensors. American Chemical Society, 2008. 108: p. 814-825.
23. Su, S., et al., Direct electrochemistry of glucose oxidase and a biosensor for glucose based on a glass carbon electrode modified with MoS2 nanosheets decorated with gold nanoparticles. Microchimica Acta, 2014. 181(13-14): p. 1497-1503.
24. Kirsch, J., et al., Biosensor technology: recent advances in threat agent detection and medicine. Chemical Society Reviews, 2013. 42(22): p. 8733-68.
25. Iijima, S., Helical microtubules of graphitic carbon. Nature, 1991. 354: p. 56-58.
26. M. M. J. Treacy, T.W.E., J. M. Gibson, Exceptionally high Young's modulus observed for individual carbon nanotubes. Nature, 1996. 381: p. 678-680.
27. T. W. Ebbesen, H.J.L., H. Hiura, J. W. Bennett, H. F. Ghaemi, T. Thio, Electrical conductivity of individual carbon nanotubes. Nature, 1996. 382: p. 54-56.
28. Teri Wang Odom, J.H.H., and Charles M. Lieber, Scanning Probe Microscopy Studies of Carbon Nanotubes. Topics Appl. Phys, 2001. 80: p. 173-211.
29. Li, C. and T.-W. Chou, A structural mechanics approach for the analysis of carbon nanotubes. International Journal of Solids and Structures, 2003. 40(10): p. 2487-2499.
30. http://coecs.ou.edu/Brian.P.Grady/nanotube.html.
31. P.J. B&to, K.S.V.S., P.M. Ajayan Carbon nanotube electrode for oxidation of dopamine. Bioelectrochemistry and Bioenergetics 1996. 41: p. 121-125.
32. Cai, C. and J. Chen, Direct electron transfer of glucose oxidase promoted by carbon nanotubes. Anal Biochem, 2004. 332(1): p. 75-83.
33. Laviron., E., General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. Journal of Electroanalytical Chemistry, 1979. 101: p. 19-28.
34. Hu, F., et al., ZnO nanoparticle and multiwalled carbon nanotubes for glucose oxidase direct electron transfer and electrocatalytic activity investigation. Journal of Molecular Catalysis B: Enzymatic, 2011. 72(3-4): p. 298-304.
35. Li, J., et al., Carbon nanotubes-nanoflake-like SnS2 nanocomposite for direct electrochemistry of glucose oxidase and glucose sensing. Biosensors and Bioelectronics, 2013. 41: p. 698-703.
36. Luo, B., et al., Two dimensional graphene–SnS2 hybrids with superior rate capability for lithium ion storage. Energy & Environmental Science, 2012. 5(1): p. 5226.
37. Gupta, R.K. and F. Yakuphanoglu, Photoconductive Schottky diode based on Al/p-Si/SnS2/Ag for optical sensor applications. Solar Energy, 2012. 86(5): p. 1539-1545.
38. Zhang, Y.C., et al., Novel synthesis and high visible light photocatalytic activity of SnS2 nanoflakes from SnCl2·2H2O and S powders. Applied Catalysis B: Environmental, 2010. 95(1-2): p. 153-159.
39. http://www.contexo.info/DNA_Basics/Amino%20Acids_and_Mutations.htm.
40. http://en.wikipedia.org/wiki/Dehydration.
41. Liu, H. and N. Hu, Study on Direct Electrochemistry of Glucose Oxidase Stabilized by Cross-Linking and Immobilized in Silica Nanoparticle Films. Electroanalysis, 2007. 19(7-8): p. 884-892.
42. Chunhua Shia, Y.D., Qingliang Liua, Yongshu Xiea, Xiaolong Xu, The FT-IR spectrometric analysis of the changes of polyphenol oxidase II secondary structure. Journal of Molecular Structure, 2003. 644: p. 139-144.
43. A. Blume , W.H., G. Messner, Fourier transform infrared spectroscopy of 13C:O labeled phospholipids hydrogen bonding to carbonyl groups. Biochemistry, 1988. 27(21): p. 8239-8249.
44. van de Weert, M., et al., Fourier transform infrared spectrometric analysis of protein conformation: effect of sampling method and stress factors. Anal Biochem, 2001. 297(2): p. 160-9.
45. Iconomidou, V.A., et al., “Soft”-cuticle protein secondary structure as revealed by FT-Raman, ATR FT-IR and CD spectroscopy. Insect Biochemistry and Molecular Biology, 2001. 31(877-775).
46. Shuowei Cai, B.R.S., Identification of β-turn and random coil amide III infrared bands for secondary structure estimation of proteins. Biophysical Chemistry, 1999. 80: p. 7-20.
47. Jose Luis R. Arrondoa, F.M.G., Structure and dynamics of membrane proteins as studied by infrared spectroscopy. Progress in Biophysics and Molecular Biology, 1999. 72(4): p. 367-405.
48. Hua Shia, L.X., Kun-yun Yangb, Chong-qin Tangb, Ting-yun Kuangb, Nan-ming Zhao, Protein secondary structure and conformational changes of photosystem II during heat denaturation studied by Fourier transform-infrared spectroscopy. Journal of Molecular Structure, 1998. 446(1-2): p. 137-147.
49. Xiang Ruana, J.W., Qiang Xua, Ju-shuo Wanga, Yan-dao Gonga, Xiu-fang Zhanga, and N.-m.Z. Ting-yun Kuangb, Comparison of the effects of Triton X-100 treatment on the protein secondary structure of Photosystem I and Photosystem II studied by FT-IR spectroscopy. Journal of Molecular Structure, 2000. 525: p. 97-106.
50. A.E. Andreeva, I.R.K., Insight into the secondary structure of chloramphenicol acetyltransferase type I — computer analysis and FT-IR spectroscopic characterization of the protein structure. Journal of Molecular Structure, 2001. 565-566: p. 177-182.
51. Wei-Zhong He, W.R.N., Parvez I. Haris, Protein secondary structure of the isolated photosystem II reaction center and conformational changes studied by Fourier transform infrared spectroscopy. Biochemistry, 1991. 30(18): p. 4552–4559.
52. Bard A.J., F.L.R., Electrochemical methods. John Wiley & Sons, Inc, 2001.
53. Periasamy, A.P., Y.J. Chang, and S.M. Chen, Amperometric glucose sensor based on glucose oxidase immobilized on gelatin-multiwalled carbon nanotube modified glassy carbon electrode. Bioelectrochemistry, 2011. 80(2): p. 114-20.
54. Mani, V., B. Devadas, and S.M. Chen, Direct electrochemistry of glucose oxidase at electrochemically reduced graphene oxide-multiwalled carbon nanotubes hybrid material modified electrode for glucose biosensor. Biosens Bioelectron, 2013. 41: p. 309-15.
55. Ma, J., et al., Plate-like SnS2 nanostructures: Hydrothermal preparation, growth mechanism and excellent electrochemical properties. CrystEngComm, 2012. 14(3): p. 832.
56. Umar, A., et al., Visible-light-driven photocatalytic and chemical sensing properties of SnS2 nanoflakes. Talanta, 2013. 114: p. 183-90.
57. Yongqian Lei, S.S., Weiqiang Fan, Yan Xing and Hongjie Zhang, Facile Synthesis and Assemblies of Flowerlike SnS2 and In3+-Doped SnS2: Hierarchical Structures and Their Enhanced Photocatalytic Property. The Journal of Physical Chemistry C, 2009. 113: p. 1280-1285.
58. Ma, D., et al., Controlled synthesis and possible formation mechanism of leaf-shaped SnS2 nanocrystals. Materials Chemistry and Physics, 2008. 111(2-3): p. 391-395.
59. 林麗娟, X 光繞射原理及其應用. 工業材料, 1994. 86: p. 100-109.
60. Yang, F., et al., Improved photodegradation activity of TiO2 via decoration with SnS2 nanoparticles. Materials Chemistry and Physics, 2013. 140(1): p. 398-404.
61. Wei, R., et al., Ultrathin SnS2 nanosheets with exposed {001} facets and enhanced photocatalytic properties. Acta Materialia, 2014. 66: p. 163-171.
62. Liu, Q., et al., Direct electrochemistry of glucose oxidase and electrochemical biosensing of glucose on quantum dots/carbon nanotubes electrodes. Biosens Bioelectron, 2007. 22(12): p. 3203-9.
64. Yang, Z., et al., Nanoflake-like SnS(2) matrix for glucose biosensing based on direct electrochemistry of glucose oxidase. Biosens Bioelectron, 2011. 26(11): p. 4337-41.
65. Gao, Y.F., et al., Direct electrochemistry of glucose oxidase and glucose biosensing on a hydroxyl fullerenes modified glassy carbon electrode. Biosens Bioelectron, 2014. 60: p. 30-4.
66. Deng, S., et al., A glucose biosensor based on direct electrochemistry of glucose oxidase immobilized on nitrogen-doped carbon nanotubes. Biosens Bioelectron, 2009. 25(2): p. 373-7.
67. Salimi, A., et al., Immobilization of glucose oxidase on electrodeposited nickel oxide nanoparticles: direct electron transfer and electrocatalytic activity. Biosens Bioelectron, 2007. 22(12): p. 3146-53.
68. Kang, X., et al., Glucose oxidase-graphene-chitosan modified electrode for direct electrochemistry and glucose sensing. Biosens Bioelectron, 2009. 25(4): p. 901-5.
69. Fu, C., et al., Direct electrochemistry of glucose oxidase on a graphite nanosheet–Nafion composite film modified electrode. Electrochemistry Communications, 2009. 11(5): p. 997-1000.
70. Wang, K., et al., Enhanced direct electrochemistry of glucose oxidase and biosensing for glucose via synergy effect of graphene and CdS nanocrystals. Biosens Bioelectron, 2011. 26(5): p. 2252-7.
71. Yang, Z., et al., Novel urchin-like In2O3–chitosan modified electrode for direct electrochemistry of glucose oxidase and biosensing. Electrochimica Acta, 2012. 70: p. 325-330.
72. Unnikrishnan, B., S. Palanisamy, and S.M. Chen, A simple electrochemical approach to fabricate a glucose biosensor based on graphene-glucose oxidase biocomposite. Biosens Bioelectron, 2013. 39(1): p. 70-5.
73. Cui, M., et al., Direct electrochemistry and electrocatalysis of glucose oxidase on three-dimensional interpenetrating, porous graphene modified electrode. Electrochimica Acta, 2013. 98: p. 48-53.
74. Yang, Z., et al., Facile synthesis of tetragonal columnar-shaped TiO2 nanorods for the construction of sensitive electrochemical glucose biosensor. Biosens Bioelectron, 2014. 54: p. 528-33.
75. Hwa, K.Y. and B. Subramani, Synthesis of zinc oxide nanoparticles on graphene-carbon nanotube hybrid for glucose biosensor applications. Biosens Bioelectron, 2014. 62: p. 127-33.
76. Palanisamy, S., C. Karuppiah, and S.M. Chen, Direct electrochemistry and electrocatalysis of glucose oxidase immobilized on reduced graphene oxide and silver nanoparticles nanocomposite modified electrode. Colloids Surf B Biointerfaces, 2014. 114: p. 164-9.
77. Hyun, K., et al., Direct electrochemistry of glucose oxidase immobilized on carbon nanotube for improving glucose sensing. International Journal of Hydrogen Energy, 2015. 40(5): p. 2199-2206.
78. Zhang, X., et al., Direct electrochemistry of glucose oxidase on novel free-standing nitrogen-doped carbon nanospheres@carbon nanofibers composite film. Sci Rep, 2015. 5: p. 9885.