簡易檢索 / 詳目顯示

研究生: 蔡宗岩
Tsai, Tsung-Yen
論文名稱: 垂直排列奈米碳管之低溫製程與其轉印技術應用於軟性電子與有序週期陣列:場發射元件與光柵
The low temperature synthesis process of verticallyaligned carbon nanotubes and the transfer process for applications in soft electronics and periodic arrays: field emission device and light grating
指導教授: 戴念華
Tai, Nyan-Hwa
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 152
中文關鍵詞: 奈米碳管場發射軟性電子光柵
外文關鍵詞: carbon nanotubes, field emission, flexible electronics, grating
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以奈米Ni粉與銀膠配製而成的催化劑漿料網印於玻璃基板上,在500℃低溫條件下製備碳管以做為場發射陰極材料。適當的催化劑濃度可增加製備的成功率與提升場發射性質,而過高的催化劑濃度使得陰極於碳管成長過程中因體積膨脹導致脫落,過低的催化劑濃度使得陰極上的碳管覆蓋率過低而降低其場發射密度。
    垂直碳管製程以Co/Ti為二元催化金屬,可在低溫(450℃)下於玻璃基板上或矽基板上製備垂直排列的奈米碳管陣列,Co/Ti催化劑的配比與基板的選擇對於碳管的最終成長高度影響頗深;純Co催化劑無法於低溫下直接成長出碳管,過高的Ti含量也無法在低溫下長出垂直碳管。矽基板於高溫(700℃)處理下容易與催化劑反應使催化劑活性降低而無法長出垂直碳管,此問題可以用兩階段控溫製程來避免催化劑受基板的毒化作用。此外,為了在微米級週期結構的表面上成長垂直奈米碳管陣列,在不同尺寸的PS球陣列上鍍製催化劑,實驗中發現,在Co/Ti的系統中以3 nm/3 nm的厚度比例是可以用在微米級的週期結構中。
    轉印製程的研究分為硬式基板與軟性基板轉印法,以銀膠為轉印媒介適用於以硬式耐溫基板轉印高於20微米的奈米碳管陣列,可以轉印複雜的垂直碳管圖案,經轉印後碳管頂端結構為開口狀,適用於製作高電流密度之場發射陰極材料。另外開發軟性基板的轉印製程,可轉印5微米高度的垂直碳管陣列,轉印後圖案可以保持不變且線寬可小至5微米,於撓曲情況下仍具有場發射性質,且具有彎曲應變規的功能。
    以自組裝奈米球為遮罩的微影製程經由使用毒化層的方式得到改善,可用以製作大面積且均勻的碳管週期陣列,由於陣列週期在可見光波長範圍因此表現出與可見光的繞射效果,此外由Si模光柵圖形化的製程可將碳管陣列轉印至軟性基板上,週期圖案可達到350 nm的尺度,結構週期與光譜分析符合射繞理論,利用此碳管陣列光柵可在視覺上達到全黑至彩光的效果。


    In this work, Ni nanopowder mixed with commercial Ag-paste was screen-printed on glass substrate, and then growth of carbon nanotubes (CNTs) was performed in a chemical vapour deposition (CVD) chamber at 500 °C for fabricating field emitters. The proper concentration of catalyst enables to the successful production of cathode and enhances the field emission properties. However, higher catalyst concentration results in the cathode peeling off due to the volume expansion during the growth of CNT and lower catalyst concentration results of decrease in the emission sites due to the poor CNT coverage.
    The growth of vertically aligned CNT (VA-CNT) on glass substrate at a low temperature of 450°C was demonstrated using Co/Ti bimetallic catalyst. It was found that the ratio of Co/Ti and the selection of substrate influence the CNT length; CNTs can not grow on glass substrate at lower temperature when pure Co layer or catalyst layer with excess Ti content was used. Si substrate reacts easily with catalyst under higher temperature (700°C), which decreases the catalyst activity and fails to grow VA-CNT. To overcome this problem, a two-step process was proposed which can prevent the catalyst from poisoning during CNT synthesis. Moreover, in order to grow VA-CNT array on the surface of micro-scale periodic structures, the catalyst was coated on the array composed of PS spheres with different sizes. It was found that the Co/Ti catalyst system with the ratio of 3 nm/3 nm in thickness could be used in micro-scale periodic structures.
    The study of transfer process can be categorized into two sorts, one is for hard substrate and the other is for soft substrate. For transferring complicated VA-CNT pattern with a height higher than 20 □m onto a hard substrate, silver paste was adopted as transfer medium. After the transfer process, the CNTs with open-end structure fit them to fabricate the field emitter for the high current density applications. A direct transfer method was developed for transferring VA-CNT with height of about 5 □m onto soft substrate. After the transfer process, the VA-CNTs maintained their initial orientation in the designed pattern and showed the pattern even the line width is about 5 □m. The flexible device showed excellent emission performance even if under bending condition and exhibited the function of strain gauge for bending.
    A self-assembly nano sphere lithography (NSL) mask for the fabrication of periodic CNT arrays was improved by adopting a catalyst-poisoning layer. Using this method, the uniformity of the CNT array could be improved by preventing the negative influence of arrangement defects in self-assembled monolayers. CNT array exhibited the diffraction of visible light due to the size and period within the wavelength scale. In addition, the process with Si mold for patterning a grating was capable of transferring CNT array onto flexible substrate. The periodic pattern could be in the scale of 350 nm. The structure period and spectra analysis match the diffraction theory. The vision from dark to iridescence was obtained by using the CNT grating.

    總目錄 摘要……………………………………………………………………Ⅰ Abstract ………………………………………………………………Ⅲ 致謝…………………………………………………………………Ⅴ 總目錄 …………………………………………………………………Ⅶ 圖目錄 ………………………………………………………………ⅩⅡ 第一章 緒論……………………………………………………………1 1.1 簡介……………………………………………………………1 1.2 研究背景……………………………………………………1 1.2.1 奈米碳管之結構與性質…………………………………2 1.2.2 奈米碳管主要製程………………………………………4 1.2.2.1 弧光放電法 (arc-discharge method)…………4 1.2.2.2 雷射熱昇華法(laser ablation method)…………5 1.2.2.3 化學氣相沉積法(chemical vapor deposition)…6 1.3 研究動機………………………………………………………7 第二章 文獻回顧………………………………………………………13 2.1 奈米碳管的低溫製程………………………………………13 2.1.1 用於低溫成長碳管之網印技術………………………13 2.1.2 低溫成長垂直碳管技術………………………………14 2.1.3 低溫成長之碳源選用…………………………………15 2.2 轉印製程技術………………………………………………18 2.2.1 轉印硬式基板製程……………………………………18 2.2.2 轉印軟性基板製程技術………………………………24 2.2.2.1 網絡式二維碳管膜之轉印製程…………………24 2.2.2.2 垂直碳管陣列圖案化轉印製程…………………27 2.2.2.3 水平碳管陣列之製程……………………………35 2.3自組裝奈米球陣列…………………………………………36 2.3.1 單層自組裝奈米球陣列製程…………………………36 2.3.2 自組裝球陣列結構與應用……………………………37 2.4 碳管之軟性電子應用………………………………………43 2.4.1 軟性透明導電膜………………………………………43 2.4.2 軟性場效電晶體通道…………………………………45 2.4.3 軟性場發射陰極……………………………………46 2.4.4 軟性能源材料…………………………………………49 2.4.5 其他應用:氣體感測與積體電路通道………………52 2.5 垂直碳管陣列之最暗物質與基本平面週期結構之繞射現 象……………………………………………………………54 2.5.1碳管之最暗物質………………………………………54 2.5.2 繞射光(Diffraction light) ………………………………54 2.6 場發射理論……………………………………………57 2.6.1 Fowler-Nordheim方程式應用於奈米碳管場發射量測57 第三章 研究內容與實驗步驟…………………………………………60 3.1 研究內容…………………………………………………60 3.2 實驗步驟…………………………………………………60 3.2.1 低溫碳管製程…………………………………………60 3.2.1.1 奈米鎳粉混合銀膠催化劑之製備與熱處理……60 3.2.1.2 鍍製Co/Ti催化劑於玻璃基板與Si基板…………61 3.2.1.3 碳管成長製程……………………………………61 3.2.3 自組裝奈米球陣列製程………………………………62 3.3量測儀器簡介……………………………………………63 3.3.1 奈米碳管微觀形貌之觀察(FE-SEM)…………………63 3.3.2 奈米碳管細微結構之觀察(TEM)……………………63 3.3.3 薄膜表面立體形態 (AFM) ……………………………64 3.3.4 X光光電子能譜儀分析表面成分(XPS) ……………64 3.3.5 檢測石墨排列結構及結晶性(Micro Raman system) …64 3.3.6奈米碳管場發射性質量測(Keithley 237)……………65 第四章 低溫成長奈米碳管製程研究…………………………………68 4.1網印催化劑漿料直接於玻璃基板上成長奈米碳…………68 4.1.1 催化劑漿料調配與碳管成長結果……………………68 4.1.2 場發射結果……………………………………………69 4.2 以薄膜製程製作垂直碳管於玻璃基板上…………………70 4.2.1 催化劑參數對在玻璃基板上成長碳管的影響………71 4.2.2矽基材對碳管成長溫度的影響與改善方法…………72 4.2.3催化劑鍍層順序的影響………………………………73 4.2.4比較玻璃基材與矽基材對成長碳管的影響…………74 4.3 以薄膜製程製作垂直碳管於自組裝金屬球殼上…………74 4.3.1 電極材料選擇與垂直碳管成長………………………74 4.3.2 垂直碳管成長於自組裝球殼陣列……………………75 第五章 垂直碳管陣列轉印製程研究…………………………………89 5.1銀膠轉印製程………………………………………………89 5.2 軟性基板轉印製程…………………………………………91 5.3 循環利用再轉印製程………………………………………95 第六章 有序碳管陣列製作及其光學性質…………………………112 6.1自組裝碳管陣列的製備……………………………………112 6.2自組裝有序碳管陣列週期之繞射現象……………………115 6.3 光柵Si模轉印週期碳管圖形之光學現象…………………117 第七章 結論與未來工作建議………………………………………135 7.1結論…………………………………………………………135 7.2未來工作建議………………………………………………137 參考文獻………………………………………………………………138 個人著作………………………………………………………………147 附錄A……………………………………………………………150 附錄B…………………………………………………………………151 附錄C…………………………………………………………………152 圖目錄 圖1.1 碳元素的四種同素異構體,(a)鑽石、(b)石墨、(c)富勒烯(fullerene)、(d)奈米碳管…………………………………………………8 圖1.2 奈米碳管之HR-TEM影像,(a)五層碳管、(b)雙層碳管、(c)七層碳管…………………………………………………………………8 圖1.3 碳管螺旋結構類型,(a)扶手椅型(n,n)、(b)鋸齒型(n,0)、(c)螺旋型(n,m)………………………………………………………………9 圖1.4 碳管的平面向量結構,(a)由石墨層捲曲成封閉碳管示意圖,(b)碳管向量結構與電性分布圖……………………………………9 圖1.5 (5,5)和(10,10) armchair奈米碳管的拉伸應變形成(5-7-7-5)結構示意圖…………………………………………………………………10 圖1.6 利用AFM以實驗直接量測單壁奈米碳管之機械性質………10 圖1.7 電弧放電生產碳管裝置示意圖………………………………11 圖1.8 雷射熱昇華法生產碳管裝置示意圖………………………11 圖1.9 化學氣相沈積法生產碳管裝置示意圖………………………12 圖1.10 流動觸媒法裝置示意圖………………………………………12 圖2.1.1 前段預熱後段低溫碳管製程之管型爐示意圖……………16 圖2.1.2 催化劑顆粒篩選鍍製與爐管熱處理示意圖……………16 圖2.1.3 各種碳源的形成熱…………………………………………17 圖2.1.4 使用不同碳源成長碳管SEM圖……………………………17 圖2.2.1 以Sn/Pd低溫轉印之流程示意圖…………………………21 圖2.2.2 以網印Sn/Pd焊料經碳管轉印之實際影像,(a)使用頂端開口之碳管,(b)使用非頂端開口之碳管………………………………21 圖2.2.3 以電鍍焊料圖形轉印垂直碳管之示意圖與SEM影像,(a)低倍正向圖案,(b)高倍率正向圖案,(c)反向圖案………………22 圖2.2.4 加熱壓印將垂直碳管轉印於圖形化的導電黏著劑,流程示意圖與SEM影像,(a)為圖形化的導電黏著劑,(b)為原始導電黏著劑殘留層SEM影像………………………………………………………22 圖2.2.5 加熱壓印將垂直碳管轉印於圖形化的導電黏著劑 SEM影像,(a)垂直碳管轉印於圖形化的導電黏著劑,(b)經轉印後之初始碳管殘留層SEM影像……………………………………………………23 圖2.2.6 以銀填充複合材為黏附層之碳管轉印製程流程示意圖,(a)轉印後樣品之實際影像,(b)SEM影像,(c)高倍率SEM影像……23 圖2.2.7 以印章法轉印水平排列碳管製程與轉印後SEM影像……24 圖2.2.8 二維碳管圖形轉印製程……………………………………25 圖2.2.9 經轉印後之碳管透明導電層影像…………………………26 圖2.2.10 用於OLED透明電極之製程………………………………26 圖2.2.11 單壁奈米碳管網膜為透明軟性導電層實例,(A)不同厚度碳管膜實際影像,(B)大面積製做成品影像,(C)樣品彎曲時的影像,(D)碳管表面形貌AFM影像………………………………………………27 圖2.2.12 以灌漿法將垂直奈米碳管陣列轉印於軟性材料之製程與樣品影像,(a)流程圖,(b)完成之樣品可撓曲成管狀…………………30 圖2.2.13 垂直碳管複合材之應變與阻抗變化曲線圖,(a)拉伸應變,(b)壓縮應變…………………………………………………………31 圖2.2.14 以矽樹脂轉印垂直碳管製程與SEM影像,(a)薄矽樹脂膜轉印法,(b) 厚矽樹脂膜轉印法………………………………………31 圖2.2.15 以聚氨酯(polyurethane)溶液轉印垂直奈米碳纖維,(a)以PECVD在Si基板上成長奈米碳纖維放入培養皿中,(b)真空條件下將聚氨酯倒入培養皿中,(c)聚氨酯熟成後將Si基板剝離,(d)以氧電漿選擇性蝕刻聚氨酯表面使碳纖維露出表面。右邊為實際樣品轉印後之影像與SEM影像………………………………………………………32 圖2.2.16 以聚集甲基矽氧烷(polydimethylsiloxane, PDMS)為轉印媒介,轉印流程與樣品實際光學影像,(a)轉印流程圖,(b)完成轉印的各種基板樣品之光學影像,(c)轉印在高分子基板之光學影像………32 圖2.2.17 碳管轉印後之橫截面SEM影像,(a)低倍率SEM影像,(b)、(c)分別為(a)中標示b、c之放大影像,(d)圖案化碳管陣列轉印後之SEM影像………………………………………………………………33 圖2.2.18 以氰氟酸溶液將成長垂直碳管的SiO2/Si基板進行選擇性蝕刻轉移碳管方法……………………………………………………33 圖2.2.19 在Si模上成長垂直碳管示意圖與SEM影像,(a)、(b)碳管成長於Si模上之SEM影像……………………………………………34 圖2.2.20 Si模轉印碳管圖形程序與SEM影像,(a)、(b)、(c)為轉印完成後SEM影像………………………………………………………34 圖2.2.21 水平碳管陣列之製程………………………………………35 圖2.3.1 單層奈米球陣列為遮罩,(a)為單層球陣列示意圖,(b)三重對稱的奈米點陣列……………………………………………………39 圖2.3.2 雙層奈米球陣列為遮罩,(a)為雙層球陣列示意圖,(b)六重對稱的奈米點陣列…………………………………………………40 圖2.3.3 以單層奈米球陣列所製作之奈米碳管與奈米線陣列,(a)三重對稱單根碳管陣列[72],(b)蜂窩狀ZnO奈米線陣列………………40 圖2.3.4 以單層奈米球陣列遮罩鍍層SEM影像,(a)濺鍍法,(b)蒸渡法………………………………………………………………………41 圖2.3.5 利用單層奈米球陣列製作大面積的奈米磁紀錄陣列, (a)新製程流程圖,(b)以新製程所製作之Ni磁紀錄點陣SEM影像,(c)以傳統手法所製作Ni磁紀錄點陣SEM影像…………………………41 圖2.3.6 利用單層奈米球陣列製作蜂窩狀的連續金屬膜當作二次遮罩製作流程與SEM影像,(a)雙基板製程,(b)單基板製程……………42 圖2.3.7 PS球所製作的奈米蜂窩結構與奈米金的SEM影像,(a)、(b)、(c)、(d)分別為300、400、600、800 nm PS球為模板所製作的奈米顆粒…………………………………………………………………42 圖2.4.1 單壁碳管製作有機場效電晶體之透明電極,(a)元件示意圖,(b)各層透光度……………………………………………………44 圖2.4.2 (a)方向性碳管為超高頻電晶體通道之示意圖,(b)元件光學影像,(c)局部碳管水平陣列,(d)實體影像,(e)撓曲程度與電性關系圖………………………………………………………………………46 圖2.4.3 (a)為鍍製金陣列所需之金屬遮罩,(b)鍍上金與鈦金屬膜之PET基材,(c)軟性場發陰極完成之示意圖,右圖為場發射特性電流電場曲線與FN plot………………………………………………………48 圖2.4.4 碳錐之SEM影像(a)、TEM影像(b)、碳膜原子擴散成碳錐機制示意圖(c),右圖為場發射特性曲線………………………………48 圖2.4.5 (a)軟性場發射陰極長時間測試表現,(b)為實際彎曲測試的影像,內圖為發光的影像………………………………………………49 圖2.4.6 微波加熱網印軟性碳管於PC板,(a)SEM影像,(b)樣品撓曲影像,(c)實際發光影像………………………………………………49 圖2.4.7 垂直碳管陣列的壓縮釋放示意圖與SEM影像……………51 圖2.4.8 (a)軟性儲能元件結構示意圖,(b)電極彎曲實際影像,(c)電極SEM影像與示意圖…………………………………………………51 圖2.4.9 (a)垂直碳管鋰電池電極之製程,(b)循環伏安測試曲線……52 圖2.4.10 碳管陣列氣體感測器元件示意圖與氣體感測性能………53 圖2.4.11 碳管積層導電通道示意圖…………………………………53 圖2.5.1 (a)VA-CNT橫截面SEM影像,(b)傾角SEM影像,(c)上視SEM影像,(d)TEM影像,(e)反射係數表準片(左)與VA-CNT(中)及玻璃碳(右)在閃光燈照射下拍攝的高解晰影像……………………56 圖2.5.2 六方最密堆積之點陣圖形示意圖…………………………56 圖2.6.1 金屬-真空系統場發射示意圖………………………………59 圖2.6.2 奈米碳管場發射示意圖……………………………………59 圖3.1 反應式磁控濺鍍系統…………………………………………66 圖3.2 自組裝快速升降溫CVD系統加熱裝置示意圖………………66 圖3.3 場發射量測示意圖……………………………………………67 圖4.1.1 (a)、(b)、(c)、(d)分別為11.0、5.5、2.7、1.1 wt%不同催化劑濃度的熱處理與成長結果…………………………………………77 圖4.1.2 (a)、(b)分別為有無以10% H2/Ar做還原熱處理再成長之SEM影像………………………………………………………………77 圖4.1.3 500℃成長後之TEM影像,(a)圖可依稀看出石墨層與內部有催化劑金屬存在,(b)為實心奈米碳纖維…………………………78 圖4.1.4 以催化劑漿料網印圖形之照片,(a)碳管成長前,(b)碳管成長後……………………………………………………………………78 圖4.1.5 為各濃度催化劑所製作樣品的場發射結果………………79 圖4.1.6 場發射樣品之影像,(a)測量前,(b)測量時…………………79 圖4.2.1 成長碳管之SEM影像(a)、(b)、(c)分別為不同Ti原子比38、48、77%的Co/Ti薄膜為催化金屬,各別以溫度為450、500、550℃成長結果………………………………………………………………80 圖4.2.2 以玻璃為基板鍍上純Co經500℃成長條件之SEM影像。(a) 0.5,(b) 1.0,(c) 5.0,(d) 10.0 nm之Co膜………………………………81 圖4.2.3 以Si為基材於各溫度所成長碳管之SEM影像,(a)、(b)、(c)分別是500、600、700℃為成長溫度之結果,各內圖的SEM影像為上視影像,(d)前處理時以低溫500℃進行,隨後成長開始再以700℃高溫進行………………………………………………………………82 圖4.2.4 經過兩階段成長碳管的TEM影像,(a)、(b)分別為根部與頂部影像,(c)、(d)為高倍影像……………………………………………83 圖4.2.5 分別以Co/Ti和Ti/Co之順序鍍在Si基材上,Co與Ti厚度分別為0.6與1.0 nm,(a)、(c)單純熱處理後之SEM,內圖均為鍍層順序示意圖,(b)、(d)為(a)、(c)同樣試片觀察完SEM後再放入反應腔體中繼續成長碳管之SEM影像………………………………………84 圖4.2.6 垂直碳管之成長溫度與高度對照圖………………………85 圖 4.2.7 以矽基板成長垂直奈米碳管之拉曼光譜…………………85 圖4.3.1 以Ti為底電極於500和550℃成長碳管之SEM影像與鍍層示意圖。(a) Co鍍層厚度1 nm,(b) Co鍍層厚度5 nm………………86 圖4.3.2 以Mo為底電極於500和550℃成長碳管之SEM影像與鍍層示意圖。(a) 沒有TiN中間層,(b)有TiN中間層……………………86 圖4.3.3 以不同大小的PS球陣列為模板和沒有PS球的Si基板(~∞),依序鍍上100 nm Mo、75 nm TiN和1 nm Ti當作固定鍍層,以600℃成長碳管的SEM影像,橫座標為催化劑Co的厚度,縱座標為PS球直徑……………………………………………………………87 圖4.3.4 為圖4.3.3上半部分的橫截面SEM影像…………………88 圖4.3.5 鍍層順序與厚度為3Co/3Ti/75TiN/100Mo並以 600℃成長垂直碳管之SEM影像,分別以(a) 500 nm PS球,(b) 1 □m PS球為基材………………………………………………………………………88 圖5.1.1 銀膠轉印流程,(a)垂直碳管陣列製備與陶瓷基材準備,(b)網印銀膠於陶瓷基板上,(c)將碳管陣列倒置於銀膠上方,(d)以加熱板烘烤銀膠,(e)剝離Si基板,(f)銀膠燒結處理………………………97 圖5.1.2 銀膠轉印結果,(a)轉印後之光學影像,(b)轉印前之Si基板與垂直碳管陣列SEM影像,(c)轉印後之SEM影像,(d)轉印後之碳管陣列高度SEM影像…………………………………………………98 圖5.1.3 銀膠轉印後烘烤與燒結處理SEM影像,(a)僅經過烘烤,(b)經過燒結處理,(c)經過燒結處理,(d)經過燒結處理…………………99 圖5.1.4 複雜形狀之碳管陣列經轉印後之影像,(a)光學影像,(b)SEM影像……………………………………………………………………99 圖5.1.5 碳管陣列轉印後之SEM影像……………………………100 圖5.1.6 清大校徽之碳管圖案經轉印後之SEM影像,(a) 200倍,(b) 1000倍,(c) 5000倍,(d) 50000倍……………………………………101 圖5.1.7 轉印前碳管頂端HRTEM影像……………………………102 圖5.1.8 轉印後碳管頂端HRTEM影像……………………………103 圖5.2.1 碳管陣列轉印於軟性基板之流程示意圖與成品影像……104 圖5.2.2 轉印後的SEM微觀形貌, (a)低倍與高倍上視影像,(b)側視影像,插圖為線寬5 □m的圖形,(c)橫截面影像,(d)碳管圖形之一角落…………………………………………………………………105 圖5.2.3 PC基板厚度為500 □m,碳管圖案在半徑為864 □m的彎曲程度下的SEM影像,(a)試片的低倍率影像,(b)、(c)圖為放大影像.106 圖5.2.4 轉印後碳管樣品的場發射性質,(a)、(b)、(c)分別為組裝示意圖,(d)、(e)、(f)分別為三種組裝狀況之元件在各種電壓下的實際發光影像,圖(g)為三種狀況的場發射特性J-E曲線,內圖為FN plot107 圖5.2.5 測試彎曲程度對電阻改變的傾向,(a) 碳管薄膜在外彎的PC板表面上表,左上插圖為循環測試結果,(b)碳管膜在內凹的PC板上電組變化情形……………………………………………………108 圖5.2.6 垂直壓力與電阻的變化反應,內圖為測試的組裝示意圖109 圖5.3.1 循環利用轉印流程圖,(a)催化劑圖形化,(b)碳管圖形成長,(c)轉印施行(Si基板可再回到(b)步驟再成長碳管,(d)完成轉印至PC板上……………………………………………………………………109 圖5.3.2 以同一個催化劑試片轉印樣品三次與其拉曼光譜………110 圖5.3.3 同一催化劑試片第四次成長形貌與拉曼光譜……………110 圖5.3.4 以第二次轉印完成之樣品量測其場發射性質與發光狀態之光學影像……………………………………………………………111 圖5.3.5 以第二次轉印完成之樣品以500 V量測之長時間場發射性質………………………………………………………………………111 圖6.1.1 直接以自組裝PS球為遮罩鍍製催化劑後之成長結果SEM影像,(a)50000倍率上視圖,(b)20000倍上視圖,(c)50000倍傾視圖,(d)1000倍上視圖……………………………………………………118 圖6.1.2 用於製備最密堆積的碳管叢簇陣列的倒轉製程…………119 圖6.1.3 (a)AFM立體影像,掃描範圍是10×10 □m2的正方形面積,所用PS球大小約1 □m的直徑, (b)最密堆積方向截面形貌,(c)與最密堆積方向偏30度方向的截面形貌………………………………120 圖6.1.4 有序碳管叢簇SEM影像,(a)高倍率傾視圖,(b)低倍率上視圖,內圖為樣品實際觀察到的繞涉光影像…………………………121 圖6.1.5 不同大小的PS球所製備不同週期的碳管叢簇陣列SEM影像, (a)、(b)、(c)分別是以967、465、283 nm的PS球所製作單層球的SEM影像,(d)、(e)、(f)分別是以上述的樣品所製作的碳管叢簇陣列………………………………………………………………………122 圖6.1.6 XPS表面分析光譜,三組樣品分別為Co/Ti/Si兩個與Co/Ti/Mo/Si一組,Co與Ti均是1 nm厚度,Mo為100 nm厚度。將有Mo與沒有Mo的試片做700℃持溫5分鐘的熱處理,剩下的一片不經熱處理………………………………………………………123 圖6.2.1 光學偵測示意圖……………………………………………124 圖6.2.2 以1 □m PS球為遮罩在Si基材上所製備之碳管叢簇陣列之反射光譜圖……………………………………………………………124 圖6.2.3 以1 □m PS球為遮罩在玻璃基材上所製備之碳管叢簇陣列之反射光譜圖…………………………………………………………125 圖6.2.4 以500 nm PS球為遮罩在Si基材上所製備之碳管叢簇陣列之反射光譜圖…………………………………………………………125 圖6.2.5 以500 nm PS球為遮罩在玻璃基材上所製備之碳管叢簇陣列之反射光譜圖……………………………………………………126 圖6.2.6 碳管週期為1 □m之陣列完整地轉移至PC板上樣品實際影像與SEM影像,(a)轉印完成之實際樣品影像,(b) 10000倍,(c) 5000倍,(d) 1000倍等倍率之SEM影像…………………………………127 圖6.2.7 奈碳管週期為1 □m之陣列轉移至PC板上之反射光譜…127 圖6.3.1 Si模轉印垂直碳管陣列製作流程示意圖,(a)將催化劑鍍製到Si模表面上,(b) 快速升降溫CVD系統成長垂直碳管,(c)、(d)以轉印製程將碳管轉移至PC基材上,(e)以膠帶黏貼樣品表面,(f) 將膠帶撕離留下清楚的碳管圖案如Si模圖形………………………128 圖6.3.2 以轉印製成將碳管由Si模上印至PC基材上並以膠帶施以表面處理之SEM影像,(a)撕黏處理介面低倍率影像,(b)撕黏處理介面高倍率影像,(c)撕黏處理後碳管圖形低倍率影像,(d) 撕黏處理後碳管圖形高倍率影像…………………………………………………129 圖6.3.3 於Si模上碳管成長後之SEM影像………………………130 圖6.3.4 L350P700光柵圖形經轉印於PC板上與表面撕黏處理後之碳管SEM影像………………………………………………………131 圖6.3.5 L1000P2000光柵圖形經轉印於PC板上與表面撕黏處理後之碳管SEM影像………………………………………………………132 圖6.3.6 L350P700光柵圖形經轉印於PC板上與表面撕黏處理後之碳管陣列穿透光譜圖……………………………………………………133 圖6.3.7 L1000P2000光柵圖形經轉印於PC板上與表面撕黏處理後之碳管陣列穿透光譜圖…………………………………………………133 圖6.3.8 經轉印於PC板上與表面撕黏處理後之碳管光柵圖形陣列與照光方向反應之影像,(a)照光方向垂直光柵圖案,(b)照光方向平行於光柵圖案……………………………………………………………134

    [1] S. Iijima, “Helical microtubules of graphitic carbon”, Nature, 354, 56 (1991)
    [2] S. Iijima, T. Ichihashi, “Single-shell carbon nanotubes of 1-nm diameter”, Nature, 363, 603 (1993)
    [3] Rice University: Rick Smalley’s Group Home Page Image Gallery
    [4] M. S. Dresselhaus, G. Dresselhaus, P. C. Eklund, Science of Fullerenes & Carbon Nanotubes, San Diego: Academic Press (1996)
    [5] M. S. Dresselhaus, G. Dresselhaus, and R. Saito, “Physics of carbon nanotubes”, Carbon, 33, 883 (1995)
    [6] N. Hanada, S. I. Sawada, A. Oshiyama, “New One-Dimensional Conductor Microtubles”, Phys. Rev. Lett., 68, 1579 (1992)
    [7] J. W. Mintmire, B. I. Dunlap, C. T. White, “Are Fullerene Tubles Metallic?”, Phys. Rev. Lett., 68, 631 (1992)
    [8] R. Saito, M. Fujita, G. Dresselhaus, “Physical Properties of Carbon Nanotubes”, Imperial College (1998)
    [9] M. B. Nardelli, B. I. Yakobson, and J. Bernholc, ‘‘Mechanism of strain release in carbon nanotubes’’, Phys. Rev. B., 57, 4277 (1998)
    [10] Min-Feng Yu, B. S. Files, S. Arepalli, and R. S. Ruoff, ‘‘Tensile Loading of Ropes of Single Wall Carbon Nanotubes and their Mechanical Properties’’, Phys. Rev. Lett, 84, 5552 (2000)
    [11] Y. Saito, S. Uemura, ‘‘Field emission from carbon nanotubes and its application to electron sources’’, Carbon, 38, 169 (2000)
    [12] T. Guo, P. Nikolaev, A. Thess, D. T. Colbert, R. E. Smalley, ‘‘Catalytic growth of single-walled nanotubes by laser vaporization’’, Chem. Phys. Lett., 243, 49 (1995)
    [13] L. Ci, J. Wei, B. Wei, J. Liang, C. Xu, D. Wu, ‘‘Carbon nanofibers and single-walled carbon nanotubes prepared by the floating catalyst method’’, Carbon, 39, 329 (2001)
    [14] H. M. Cheng, F. Li, G. Su, H. Y. Pan, L. L. He, X. Sun and M. S. Dresselhaus, ‘‘Large-scale and low-cost synthesis of single-walled carbon nanotubes’’, Appl. Phys. Lett., 72, 3282 (1998)
    [15] C. Bower, W. Zhu, S. Jin and O. Zhou, ‘‘Plasma-induced alignment of carbon nanotubes’’, Appl. Phys. Lett., 77, 830 (2000)
    [16]M. Okai, T. Muneyoshi, T. Yaguchi, and S. Sasaki, ‘‘Structure of carbon nanotubes grown by microwave-plasma-enhanced chemical vapor deposition’’, Appl. Phys. Lett., 77, 3468 (2000)
    [17] Z. P. Huang, J. W. Xu, Z. F. Ren, J. H. Wang, M. P. Siegal and P. N. Provencio, ‘‘Growth of highly oriented carbon nanotubes by plasma-enhanced hot filament chemical vapor deposition’’, Appl. Phys. Lett., 73, 3845 (1998)
    [18] C. Liu, Y. Y. Fan, M. Liu, H. T. Cong, H. M. Cheng, M. S. Dresselhaus, ‘‘Hydrogen storage in single-walled carbon nanotubes at room temperature’’, Science, 286, 1127 (1999)
    [19] W. A. de Heer, A. Chatelain, D. Ugarte, ‘‘A carbon nanotube field-emission electron source’’, Science, 270, 1179 (1995)
    [20] Y. H. Lee, Y. T. Jang, D. H. Kim, J. H. Ahn, B. K. Ju, ‘‘Realization of gated field emitters for electrophotonic applications using carbon nanotube line emitters directly grown into submicrometer holes’’, Adv. Mater., 13, 479 (2001)
    [21] H. S. Kang, H. J. Yoon, C. O. Kim, J. P. Hong, I. T. Han, S. N. Cha, B. K. Song, J. E. Jung, N. S. Lee, J. M. Kim, ‘‘Low temperature growth of multi-wall carbon nanotubes assisted by mesh potential using a modified plasma enhanced chemical vapor deposition system’’, Chem. Phys. Lett., 349, 196 (2001)
    [22] C. J. Lee, J. Park, S. Han, J. Ihm, ‘‘Growth and field emission of carbon nanotubes on sodalime glass at 550°C using thermal chemical vapor deposition’’, Chem. Phys. Lett., 337, 398 (2001)
    [23] J. H. Han, S. H. Choi, T. Y. Lee, J. B. Yoo, C.-Y. Park, H. J. Kim, I.-T. Han, S. Yu, W. Yi, G. S. Park, M. Yang, N. S. Lee, J. M. Kim, ‘‘Effects of growth parameters on the selective area growth of carbon nanotubes’’, Thin Solid Films, 409, 126 (2002)
    [24] S. J. Kyung, J. B. Park, J. H. Lee, G. Y. Yeom, ‘‘Improvement of field emission from screen-printed carbon nanotubes by He/(N2,Ar) atmospheric pressure plasma treatment’’, J. Appl. Phys., 100, 124303 (2006)
    [25] T. J. Vink, M. Cillies, J. C. Kriege, H. W. J. J. Vande laar, ‘‘Enhanced field emission from printed carbon nanotubes by mechanical surface modification’’, Appl. Phys. Lett., 83, 3552 (2003)
    [26] D. H. Kim, C. D. Kim, H. R. Lee, ‘‘Effects of the ion irradiation of screen-printed carbon nanotubes for use in field emission display applications’’, Carbon, 42, 1807 (2004)
    [27] Y. C. Kim, K. H. Sohn, Y. M. Cho, E. H. Yoo, ‘‘Vertical alignment of printed carbon nanotubes by multiple field emission cycles’’, Appl. Phys. Lett., 84, 5350 (2004)
    [28] A. Gohel, K. C. Chin, Y. W. Zhu, C. H. Sow, A. T. S. Wee, ‘‘Field emission properties of N2 and Ar plasma-treated multi-wall carbon nanotubes’’, Carbon, 43, 2530 (2005)
    [29] K. F. Chen, K. C. Chen, Y. C. Jiang, L. Y. Jiang, Y. Y. Chang, M. C. Hsiao, L. H. Chan, ‘‘Field emission image uniformity improvement by laser treating carbon nanotube powders’’, Appl. Phys. Lett., 88, 193127 (2006)
    [30] M. A. Guillorn, M. D. Hale, V. I. Merkulov, M. L. Simpson, ‘‘Integrally gated carbon nanotube field emission cathodes produced by standard microfabrication techniques’’, J. Vac. Sci. Technol. B, 21, 957 (2003)
    [31] Y. Shiratori, H. Hiraoka, Y. Takeuchi, ‘‘One-step formation of aligned carbon nanotube field emitters at 400 °C’’, Appl. Phys. Lett., 82, 2485 (2003)
    [32] Y. J. Li, Z. Sun, S. P. Lau, G. Y. Chen, B. K. Tay, ‘‘Carbon nanotube films prepared by thermal chemical vapor deposition at low temperature for field emission applications’’, Appl. Phys. Lett., 79, 1670 (2001)
    [33] I. T. Han, H. J. Kim, Y. J. Park, N. Lee, J. E. Jang, J. W. Kim, J. E. Jung, J. M. Kim, ‘‘Fabrication and characterization of gated field emitter arrays with self-aligned carbon nanotubes grown by chemical vapor deposition’’, Appl. Phys. Lett., 81, 2070 (2002)
    [34] Q. Li, J. Xu, K. Yu, Z. Zhu, T. Feng, X. Wang, X. Liu, W. P. Kang, J. L. Davidson, ‘‘Field emission characteristics of nodular carbon nanotubes’’, J. Vac. Sci. Technol. B, 21, 1684 (2003)
    [35] G. Takeda, L. Pan, S. Akita, Y. Nakayama, ‘‘Vertically aligned carbon nanotubes grown at low temperatures for use in displays’’, Jnp. J. Appl. Phys., 44, 5642 (2005)
    [36] Y. Nakayama, L. Pan, G. Takeda, ‘‘Low-temperature growth of vertically aligned carbon nanotubes using binary catalysts’’, Jpn. J. Appl. Phys., 45, 369 (2006)
    [37] S. Sato, A. Kawabata, D. Kondo, M. Nihei, Y. Awano, ‘‘Carbon nanotube growth from titanium–cobalt bimetallic particles as a catalyst’’, Chem. Phys. Lett., 402, 149 (2005)
    [38] M. P. Siegal, D. L. Overmyer and F. H. Kaatz, “Controlling the site density of multiwall carbon nanotubes via growth conditions”, Appl. Phys. Lett., 84, 5156 (2004)
    [39] S. Maruyama, R. Kojima, Y. Miyauchi, S. Chiashi and M. Kohno, “Low-temperature synthesis of high-purity single-walled carbon nanotubes from alcohol”, Chem. Phys. Lett., 360, 229 (2002)
    [40] M. Cantoro, S. Hofmann, S. Pisana, V. Scardaci, A. Parvez, C. Ducati, A. C. Ferrari, A. M. Blackburn, K. Y. Wang and J. Robertson, “Catalytic Chemical Vapor Deposition of Single-Wall Carbon Nanotubes at Low Temperatures”, Nano Letters, 6, 1107 (2006)
    [41] L. Zhu, Y. Sun, D. W. Hess, C. P. Wong, ‘‘Well-aligned open-ended carbon nanotube architectures: an approach for device assembly’’, Nano. Lett., 6, 243 (2006)
    [42] A. Kumar, V. L. Pushparaj, S. Kar, O. Nalamasu, and P. M. Ajayan, ‘‘Contact transfer of aligned carbon nanotube arrays onto conducting substrates’’, Appl. Phys. Lett., 89, 163120 (2006)
    [43] T. Wang, B. Carlberg, M. Jönsson, G. H. Jeong, E. E. B. Campbell and J. Liu, ‘‘Low temperature transfer and formation of carbon nanotube arrays by imprinted conductive adhesive’’, Appl. Phys. Lett., 91, 093123 (2007)
    [44] H. Jiang, L. Zhu, K. S. Moon1 and C. P. Wong, ‘‘Low temperature carbon nanotube film transfer via conductive polymer composites’’, Nanotechnology, 18, 125203 (2007)
    [45] S. J. Kang, C. Kocabas, H. S. Kim, Q. Cao, M. A. Meitl, D. Y. Khang, J. A. Rogers, ‘‘Printed multilayer superstructures of aligned single-walled carbon nanotubes for electronic applications ’’, Nano. Lett., 7, 3343 (2007)
    [46] Y. Zhou, L. Hu, and G. Grüner, “A method of printing carbon nanotube thin films”, Appl. Phys. Lett., 88, 123109 (2006)
    [47] D. Zhang, K. Ryu, X. Liu, E. Polikarpov, J. Ly, M. E. Tompson, and C. Zhou, ‘‘Transparent, conductive, and flexible carbon nanotube films and their application in organic light-emitting diodes’’, Nano Lett., 6, 1880 (2006)
    [48] Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, A. G. Rinzler, ‘‘Transparent, conductive carbon nanotube films’’, Science, 305, 1273 (2004)
    [49] Y. J. Jung, S. Kar, S. Talapatra, C. Soldano, G. Viswanathan, X. Li, Z. Yao, F. S. Ou, A. Avadhanula, R. Vajtai, S. Curran, O. Nalamasu, and P. M. Ajayan, ‘‘Aligned carbon nanotube-polymer hybrid architectures for diverse flexible electronic applications’’, Nano Lett., 6, 413 (2006)
    [50] E. B. Sansom, D. Rinderknecht and M. Gharib, ‘‘Controlled partial embedding of carbon nanotubes within flexible transparent layers ’’, Nanotechnology, 19, 035302 (2008)
    [51] B. Aksak , M. Sitti, A. Cassell, J. Li, M. Meyyappan and P. Callen, “Friction of partially embedded vertically aligned carbon nanofibers inside elastomers”, Appl. Phys. Lett., 91, 061906 (2007)
    [52] Y. Zhu, X. Lim1, M. C. Sim, C. T. Lim and C. H. Sow, “Versatile transfer of aligned carbon nanotubes with polydimethylsiloxane as the intermediate”, Nanotechnology, 19, 325304 (2008)
    [53] Y. Chai, J. Gong, K. Zhang, P. C. H. Chan and M. M. F. Yuen, “Flexible transfer of aligned carbon nanotube films for integration at lower temperature”, Nanotechnology, 18, 355709 (2007)
    [54] A. C. Allen, E. Sunden, A. Cannon, S. Graham, and W. King, “Nanomaterial transfer using hot embossing for flexible electronic devices”, Appl. Phys. Lett., 88, 083112 (2006)
    [55] Y. Hayamizu, T. Yamada, K. Mizuno, R. C. Davis, D. N. Futaba, M. Yumura and K. Hata, “Integrated three-dimensional microelectromechanical devices from processable carbon nanotube wafers”, Nature Nanotechnology , 3, 289 (2008)
    [56] U. C. Fisher and H. P. Zingsheim, ‘‘Submicroscopic pattern replication with visible light’’, J. Vac. Sci. Technol., 19, 881 (1981)
    [57] H. W. Deckman and J. H. Dunsmuir, ‘‘Natural lithography’’, Appl. Phys. Lett., 41, 377 (1982)
    [58] H. W. Deckman and J. H. Dunsmuir, ‘‘Applications of surface textures produced with natural lithography’’, J. Vac. Sci. Technol. B, 1, 1109 (1983)
    [59] A. Rogach, A. Susha, F. Caruso, G. Sukhorukov, A. Kornowski, S. Kershaw, H. Mohwald, A. Eychmuller, and H. Weller, ‘‘Nano- and microengineering: 3-D colloidal photonic crystals prepared from sub-□m-sized polystyrene latex spheres pre-coated with luminescent polyelectrolyte/nanocrystal shells’’, Adv. Mater., 12, 333 (2000).
    [60] J. C. Hulteen and R. P. Van Duyne, ‘‘Nanosphere lithography: A materials general fabrication process for periodic particle array surfaces ’’, J. Vac. Sci. Technol. A, 13, 1553 (1995).
    [61] J. C. Hulteen, D. A. Treichel, M. T. Smith, M. L. Duval, T. R. Jensen, and R. P. Van Duyne, ‘‘Nanosphere lithography: size-tunable silver nanoparticle and surface cluster arrays’’, J. Phys. Chem., 103, 3854 (1999).
    [62] M. Winzer, M. Kleiber, N. Dix, and R. Wiesendanger, ‘‘Rapid communication Fabrication of nano-dot- and nano-ring-arrays by nanosphere lithography’’, Appl. Phys. A, 63, 617 (1996).
    [63] V. Kitaev and G. A. Ozin, ‘‘Self-assembled surface patterns of binary colloidal crystals’’, Adv. Mater., 15, 75 (2003).
    [64] H. Ko, H. W. Lee, and J. Moon, ‘‘Fabrication of colloidal self-assembled monolayer (SAM) using monodisperse silica and its use as a lithographic mask’’, Thin Solid Films, 447-448, 638 (2004).
    [65] R. Micheletto, H. Fukuda, and M. Ohtsu, ‘‘A simple method for the production of a two-dimensional, ordered array of small latex particles’’, Langmuir, 11, 3333 (1995)
    [66] F. Burnmeister, W. Badowsky, T. Braun, S. Weiprich, J. Boneberg, and P. Leiderer, ‘‘Colloid monolayer lithography-A flexible approach for nanostructuring of surfaces’’, Appl. Surf. Sci., 144-145, 461 (1999)
    [67] J. Rybczynski, U. Ebels, and M. Giersig, ‘‘Large-scale, 2D arrays of magnetic nanoparticles’’, Colloids and Surfaces A, 219, 1 (2003)
    [68] M. Marquez and B. P. Grady, ‘‘The use of surface tension to predict the formation of 2D arrays of latex spheres formed via the Langmuir−Blodgett-Like technique’’, Langmuir, 20, 10998 (2004)
    [69] C. L. Haynes and R. P. Van Duyne, ‘‘Nanosphere lithography: A versatile nanofabrication tool for studies of size-dependent nanoparticle optics’’, J. Phys. Chem. B, 105, 5599 (2001)
    [70] Z. P. Huang, D. L. Carnahan, J. Rybczynski, M. Giersig, M. Sennett, D. Z. Wang, J. G. Wen, K. Kempa, and Z. F. Ren., ‘‘Growth of large periodic arrays of carbon nanotubes’’, Appl. Phys. Lett., 82, 460 (2003)
    [71] K. Kempa, B. Kimball, J. Rybczynski, Z. P. Huang, P. F. Wu, D. Steeves, M. Sennett, M. Giersig, D. V. G. L. N. Rao, D. L. Carnahan, D. Z. Wang, J. Y. Lao, W. Z. Li, and Z. F. Ren, ‘‘Photonic crystals based on periodic arrays of aligned carbon nanotubes ’’, Nano Lett., 3, 13 (2003)
    [72] J. Rybczynski, K. Kempa, Y. Wang, Z. F. Ren, J. B. Carlson, B. R. Kimball, and G. Benham, ‘‘Visible light diffraction studies on periodically aligned arrays of carbon nanotubes: Experimental and theoretical comparison’’, Appl. Phys. Lett., 88, 203122 (2006)
    [73] X. Wang, C. J. Summers, and Z. L. Wang, ‘‘Large-scale hexagonal-patterned growth of aligned ZnO nanorods for nano-optoelectronics and nanosensor arrays ’’, Nano Lett., 4, 423 (2004)
    [74] S. M. Weekes, F. Y. Ogrin, and W. A. Murray, ‘‘Fabrication of large-area ferromagnetic arrays using etched nanosphere lithography ’’, Langmuir, 20, 11208 (2004)
    [75] Y. Wang, J. Rybczynski, D. Z. Wang and Z. F. Ren, ‘‘Large-scale triangular lattice arrays of sub-micron islands by microsphere self-assembly’’, Nanotechnology, 16, 819 (2005)
    [76] Y. Wang, X. Wang, J. Rybczynski, D. Z. Wang, K. Kempa, and Z. F. Ren, ‘‘Triangular lattice of carbon nanotube arrays for negative index of refraction and subwavelength lensing effect’’, Appl. Phys. Lett., 86, 153120 (2005)
    [77] C.-C. Kei, T.-H. Chen, C.-M. Chang, C.-Y. Su, C.-T. Lee, C.-N. Hsiao, S.-C. Chang and T.-P. Perng, ‘‘Preparation of periodic arrays of metallic nanocrystals by using nanohoneycomb as reaction vessel ’’, Chem. Mater., 19, 5833 (2007)
    [78] G. Gruner, “Carbon nanotube films for transparent and plastic electronics”, J. Mater. Chem., 16, 3533 (2006)
    [79] M. W. Rowell, M. A. Topinka, M. D. McGehee, H.-J. Prall, G. Dennler, N. S. Sariciftci, L. Hu and G. Gruner, “Organic solar cells with carbon nanotube network electrodes”, Appl. Phys. Lett., 88, 233506 (2006)
    [80] Q. Cao, Z.-T. Zhu, M. G. Lemaitre, M.-G. Xia, M. Shim, and J. A. Rogers, ‘‘Transparent flexible organic thin-film transistors that use printed single-walled carbon nanotube electrodes’’, Appl. Phys. Lett., 88, 113511 (2006)
    [81] E. S. Snow, J. P. Novak, P. M. Campbell, and D. Park, ‘‘Random networks of carbon nanotubes as an electronic material’’, Appl. Phys. Lett., 82, 2145 (2003)
    [82] E. Artukovic, M. Kaempgen, D. S. Hecht, S. Roth, and G. Gru1ner, “Transparent and flexible carbon nanotube transistors ”, Nano Lett., 5, 757 (2005)
    [83] N. Chimot, V. Derycke, M. F. Goffman, J. P. Bourgoin, H. Happy and G. Dambrine, “Gigahertz frequency flexible carbon nanotube transistors”, Appl. Phys. Lett., 91, 153111 (2007)
    [84] A. Schindler, J. Brill, N. Fruehauf, J. P. Novak, Z. Yaniv, “Solution-deposited carbon nanotube layers for flexible display applications”, Physica E, 37, 119 (2007)
    [85] O.-J. Lee and K.-H. Lee, “Fabrication of flexible field emitter arrays of carbon nanotubes using self-assembly monolayers”, Appl. Phys. Lett., 82, 3770 (2003)
    [86] S. Hofmann, C. Ducati, B. Kleinsorge, and J. Robertson, “Direct growth of aligned carbon nanotube field emitter arrays onto plastic substrates”, Appl. Phys. Lett., 83, 4661 (2003)
    [87] H. S. Sim, S. P. Lau, H. Y. Yang, L. K. Ang, M. Tanemura and K. Yamaguchi, “Reliable and flexible carbon-nanofiber-based all-plastic field emission devices”, Appl. Phys. Lett., 90, 143103 (2007)
    [88] C. Y. Wang, T. H. Chen, S. C. Chang, T. S. Chin and S. Y. Cheng, “Flexible field emitter made of carbon nanotubes microwave welded onto polymer substrates ”, Appl. Phys. Lett., 90, 103111 (2007)
    [89] A. Cao, P. L. Dickrell, W. G. Sawyer, M. N. Ghasemi-Nejhad, P. M. Ajayan, “Super-compressible foamlike carbon nanotube films”, Science, 310, 1307 (2005)
    [90] V. L. Pushparaj, M. M. Shaijumon, A. Kumar, S. Murugesan, L. Ci, R. Vajtai, R. J. Linhardt, O. Nalamasu, and P. M. Ajayan, “Flexible energy storage devices based on nanocomposite paper”, PNAS, 104, 13574 (2007)
    [91] J. Chen, Y. Liu, A. I. Minett, C. Lynam, J. Wang, and G. G. Wallace, “Flexible, aligned carbon nanotube/conducting polymer electrodes for a Lithium-Ion battery”, Chem. Mater., 19, 3595 (2007)
    [92] A. Modi, N. Koratkar, E. Lass, B. Wei and P. M. Ajayan, “Miniaturized gas ionization sensors using carbon nanotubes”, Nature, 424, 171 (2003)
    [93] Y. Awano, “Carbon nanotube technologies for LSI via interconnects”, IEICE TRANS. ELECTRON., E-89C, 1499 (2006)
    [94] Z. P. Yang, L. Ci, J. A. Bur, S. Y. Lin, and P. M. Ajayan, ‘‘Experimental observation of an extremely dark material made by a low-density nanotube array’’, Nano Lett., 8, 446 (2008)
    [95] Hutley, Michael, “Diffraction Gratings”, London, New York (1982)
    [96] W. Luck, M. Klier, and H. Wesslau, Ber. Bunsenges, ‘‘Über Bragg-Reflexe mit sichtbarem Licht an monodispersen Kunststofflatices I & II’’, Phys. Chem., 67, 75 (1963)
    [97] I. M. Krieger, and F. M. O'Neill, ‘‘Diffraction of light by arrays of colloidal spheres’’, J. Am. Chem. Soc., 90, 3114 (1968)
    [98] R. Andrews, D. Jacques, A. M. Rao, F. Derbyshire, D. Qian, X. Fan, E. C. Dickey and J. Chen, ‘‘Continuous production of aligned carbon nanotubes: a step closer to commercial realization’’, Chem. Phys. Lett., 303, 467 (1999)
    [99] C. C. Chiu, T. Y. Tsai, and N. H. Tai, ‘‘Field emission properties of carbon nanotube arrays through the pattern transfer process’’, Nanotechnology, 17, 2840 (2006)
    [100]C. C. Chiu, M. Yoshimura, and K. Ueda, ‘‘Regrowth of carbon nanotube array by microwave plasma- enhanced thermal chemical vapor deposition’’, Jpn. J. Appl. Phys., 47, 1952 (2008)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE