簡易檢索 / 詳目顯示

研究生: 黃柏竣
Po-Chun Huang
論文名稱: 以化學合成法製備錫基金屬奈米粉末並探討不同保護劑對奈米粉末的保護機制
Synthesis of Tin-based Nanoparticles by Chemical Reduction Method and the Protective Mechanism of Protective Agent
指導教授: 杜正恭
Jenq-Gong Duh
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 89
中文關鍵詞: 奈米無鉛銲錫化學合成
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Unique chemical, optical and physical properties of metallic nanoparticles can be derived due to the high surface ratio as compared with bulk value. With these unusual properties, many applications of nanotechnology have been investigated in the recent years. In this study, the application of solders in electric package was investigated. Chemical reduction method was applied to synthesize tin-based nanoparticles. In an immediate fabrication method, tin-based nanoparticles were synthesized in different experimental parameters. The morphology observation of these tin-based nanoparticles was characterized by transmission electron microscopy (TEM) and field emission microscopy (FE-SEM). The size of nanoparticles was between several nanometer to hundreds nanometer with various conditions. The phase of different particle size was also identified by X-ray diffractometer (XRD). The thermal behaviors of tin-based nanoparticles with various compositions were investigated using differential scanning calorimeter (DSC). No other endothermic peaks were found in the DSC profile, implying the complete melting of Sn-Cu-xBi nanoparticles below 240oC for the reflow temperature.

    In an improved fabrication method, tin nanoparticles with different surfactant type and concentration were synthesized by chemical reduction method. Three kinds of protection agent were used. Various morphologies were observed using different types of protective agent. The correlations between nanoparticle morphology and protective agent were revealed by FTIR results. Proposed mechanisms of each protective agent were also discussed. In final part, the phase and the melting behavior of tin nanoparticles synthesized by improved fabrication method were identified by XRD and DSC analysis. The wetting properties of tin nanosolder were also discussed in the final part.


    Table List................................................................................................IV Figure Caption.........................................................................................V Abstract...................................................................................................IX Chapter I Introduction 1 1.1 Background 1 1.2 Motivation 3 Chapter II Literature Review 5 2.1 Nanotechnology 5 2.2 The different properties of nanomaterial from bulk material 6 2.2.1 Change in electronic structure 6 2.2.2 Optical property for metallic nanoparticle 7 2.2.3 The size dependent melting properties for nanoparticle 8 2.2.4 The proposed mechanisms for nanoparticle melting 9 2.3 The preparation method for metallic nanoparticles 13 2.4 The morphology control for nano structure synthesized by chemical reduction method 16 2.5 Tin-base nanoparticle synthesis 17 Chapter III Experimental Procedure 35 3.1 Fabrication of Sn base nanoparticles 35 3.1.1 Materials 35 3.1.2 Synthesis 35 3.2 Characterization and analysis 36 3.2.1 Morphology observation 36 3.2.2 Phase identification 36 3.2.3 Melting behavior analysis 36 3.2.4 Bounding state measurement 37 Chapter IV Results and Discussion 41 4.1 Synthesis and Characterization of Sn-Cu-xBi Nanosolders Alloy by Chemical Reduction Method 41 4.1.1 The SnCu nanoparticles morphology with different quantities of SDS addition and different precursor concentration 41 4.1.2 The characterization of Sn-0.7Cu nanoparticles by XRD measurement 42 4.1.3 DSC results of Sn-0.7Cu nanoparticles with different precursor concentration 43 4.1.4 The thermal behavior of Sn-0.7Cu-xBi nanoparticles with different Bi concentration. 44 4.2 Effects of Different Surfactant Additions and reatments on the Characteristics of Tin Nanosolder by Improved Method 55 4.2.1 The synthesis of tin nanoparticles by an improved fabrication method 55 4.2.2 The differences between the improved method and the preliminary method 56 4.2.3 Tin nanoparticles synthesized with a polymer protective agent: PVP 57 4.2.4 Tin nanoparticles synthesized with surfactant protective agent: SDS and CTAB 59 4.2.5 The effect and protective mechanism of each protective agent 60 4.3 The Characteristic and the Wetting Properties of Tin Nanosolder Synthesized by Improved Method 76 4.3.1 The characteristic of tin nanoparticles with different protective agent 76 4.3.2 Soldering the tin nanoparticles with copper substrate 77 Chapter V Conclusions 82 References................................................................................................84

    1. Medintz IL, Uyeda HT, Goldman ER , , Nature Materials, Vol.4, p.435-446, (2005)
    2. Sang Bok Lee, David T. Mitchell, Lacramioara Trofin, Tarja K. Nevanen, Hans Söderlund, Charles R. Martin , Science, Vol. 296, p.2198 – 2200 (2002)
    3. L.Y. Hsiao, and J.G. Duh, Journal of Electronic Materials. Vol.35, p.1755-1760. (2006)
    4. G.J. Chiou, and J.G. Duh, Journal of Electronic Materials. (in press)
    5. Hongjin Jiang, Kyoung-sik Moon, Fay Hua, and C. P. Wong, , Chem. Mater., Vol.19, p.4482-4485 (2007)
    6. R. R. Tummala and V. K. Madisetti, IEEE Des. Test Comput. , Vol.16, p.48, (1999)
    7. F. H. Liu, J. C. Lu, V. Sundaram, D. Sutter, G. White, D. F. Baldwin, and R. R. Tummala, IEEE Trans. Compon. Packag. Technol., Vol.25, p.254, (2002)
    8. T. Ishii and S. Aoyama, J. Electron. Mater., Vol.33, p.21 (2004)
    9. S.T. Kao, J.G. Duh, Journal of Electronic Materials, Vol.33, p.1445-1451. (2004)
    10. H.L. Lai and J.G. Duh, J. Electronic Materials, Vol.32, p. 215-220, (2003)
    11. M. Abtew and G. Selvaduray, Mater. Sci. Eng., Vol.27. p.95, (2000)
    12. J. S. Hwang, Modern Solder Technology for Competitive Electronics Manufacturing, p. 485, McGraw-Hill, New York (1996)
    13. B.L. Young, and J.G. Duh, J. Electronic Materials, Vol.30, p.878-884, (2001)
    14. M. L. Huang, C. M. L. Wu, J. K. L. Lai, L. Wang, and F. G. Wang, J. Mater. Sci.: Mater. Electron., Vol.11, p.57 , (2000)
    15. S. Chada, R. A. Fournelle, W. Laub, and D. Shangguan, J. Electron. Mater., Vol.29, p.1214, (2000) .
    16. W. Yang, L. E. Felton, and R. W. Messler, Jr., J. Electron. Mater., Vol.24, p.1465, (1995)
    17. T. Y. Lee, W. J. Choi, K. N. Tu, J. W. Jang, S. M. Kuo, J. K. Lin, D. R. Frear, K. Zeng, and J. K. Kivilahti, J. Mater. Res., Vol 17, p.291 (2002)
    18. Hongjin Jiang a, Kyoung-sik Moon a, Hai Dong a, Fay Hua b, C.P. Wong , Chemical Physics Letters, Vol.429, p.492–496, (2006)
    19. Zhiwei Li , Xiaojun Tao , Yaming Cheng , Zhishen Wu , Zhijun Zhang , Hongxin Dang, Ultrasonics Sonochemistry , Vol.14, p.89–92, (2007)
    20. H. S. Nalwa, Handbook of Nanostructured Materials and Nanotechnology, Vol. 1, Chap. 1, Academic Press, San Diego, CA (2000) .
    21. L.Y. Hsiao and J.G. Duh, J. Electrochem. Soc, Vol.152, p.105, (2005).
    22. Yong Wang, Jim Y. Lee and Theivanayagam C. Deivaraj , J. Mater . Chem. , Vol.14 , p.362–365 (2004)
    23. Yong Wang, Jim Y. Lee and Theivanayagam C. Deivaraj, Journal of the Electrochemical Society, Vol.151, p.1804-1809 (2004)
    24. Lavinia Balana, RaphaJ Schneiderb,, Denis Billauda, Jaafar Ghanbaja , Materials Letters, Vol.59, p.1080– 1084, (2005)
    25. Lavinia Balana, RaphaJ Schneiderb,, Denis Billauda, Jaafar Ghanbaj, Nanotechnology, Vol.16, p.1153–1158, (2005)
    26. M. Faraday, Philos. Trans. R. Soc. London, Ser, A, , Vol.147, p.145-153, (1857)
    27. Chun-Hong Kuo and Michael H. Huang, Langmuir, Vol.21, p.2012-2016, (2005)
    28. Y. Wang, N. Herron, Chem Phys. Lett., Vol.200, p.71-75 (1992).
    29. J.G. Pepin, J. Mater. Sci. Vol.2, p.34-39 (1991).
    30. M. D. Musik, D.C. Keating, M.H. Keefe, M.J. Natan, Chem. Mater. , Vol.9, p.1499-1507 (1997).
    31. J.F. Hamilton ,R.C. Baetzold, Science, Vol. 205, p.1213-1220 (1979).
    32. P.B. Joshi, N.S.S. Murti, V.L. Gadeel, J. Mater. Sci. Lett. Vol.14 , p.1099-1101 (1995)
    33. C.A. Mirkin, R.L. Letsinger, R.C. Mucic, J.J. Storhoff, Nature, Vol.382, p.607-609 (1996).
    34. L.A. Lyon, M.D. Musick, M.J. Natan, Anal. Chem. Vol.70, p.5177-5181 (1998).
    35. R. Elghanian, J.J Storhoff, R.C. Mucic, R.L. Letsinger, C.A. Mirkin, Science, Vol.277, p.1078-1081. (1997).
    36. S. Sun, C.B. Murray, J. Appl. Pgys. Vol. 85, p.4325-4330 (1999).
    37. M.N. Vargaftik, N.Y. Kozitsyna, N.V. Cherkashina, R.I. Ruby, D.I. Kochuey, I.I. Moiseev, “Metal clusters in chemistry”, Vol.3, chapter4.5, edited by P.Braunstein, L.A. Oro, P.R. Raithby, Wiley-Vch, Weinheim (1999)
    38. Schmid, G. Metals. “In Nanoscale Materials in Chemistry”, Klabunde,K. J., Ed.; Wiley-Interscience: New York, 2001; Chapter2, p15.
    39. P.P. Edwards, R.L. Johnson, C.N.R. Rao, “Metal clusters in chemistry”, Vol3, chapter4.8, edited by P.Braunstein, L.A. Oro, P.R. Raithby, Wiley-Vch, Weinheim (1999)
    40. Dabbousi, B. O. J. Phys. Chem. B , Vol.101, p.9463–9475 (1997).
    41. Hines, M. A. & Guyot-Sionnest, P. , J. Phys. Chem. Vol.100, p.468–471, (1996).
    42. I. L. Medintzi, H. T. Uyeda, E. R. Goldman ,H. Mattoussi, Nature Materials , Vol. 4, p.435-447, (2005)
    43. U. Kreibeg , M.Vollmer, Vol. 25, Springer-Verlag, Berlin, (1995)
    44. Link, S.; El-Sayed, M. A., Int. Rev. Phys. Chem., Vol. 19, p.409, (2000)
    45. G. Mie, Am., Phys. Vol. 25, p.377, (1908)
    46. Buffat, P.; Borel, J. P. Phys. Rev. A , Vol.13, p.2287, (1976)
    47. Castro, T.; Reifenberger, R.; Choi, E.; Andres, R. P., Phys.Rev.B, Vol.42, p.8548. (1990)
    48. Beck, R. D.; St. John, P.; Homer, M. L.; Whetten, R. L. Science, Vol.253, p.879, (1991)
    49. Martin, T. P.; Naher, U.; Schaber, H.; Zimmermann, U., J. Chem. Phys., Vol.100, p.2322, (1994)
    50. W Thomson, Philos. Mag. , Vol.42, p.448-452 (1871)
    51. M. Takagi, J Phys. Soc. Jpn., Vol.9, p.359, (1954).
    52. S.L Lai, J.Y. Guo, V. Petrova, L.H. Allen, G.Ramanath, Phys. Rev. Lett., Vol.77, p.99 (1996)
    53. Ph. Buffat, J-P. Borel , Phys. Rev. A, Vol 13, Number 6 (1976)
    54. F. Ercolessi, W. Andreoni, and E. Tosatti, Phys. Rev. Lett. , Vol.66, p.911 (1991)
    55. H. S. Lim, C. K. Ong, and E. Ercolessi, Z. Phys. D., Vol.26, p.45 (1993)
    56. Lennard-Jones, J. E. Cohesion. Proceedings of the Physical Society, Vol.43, p.461-482 ,( 1931)
    57. J. Sun and S. L, Simon, Thermochimica Acta, Vol.463, p.32 (2007).
    58. K. K. Nanda, S. N. Sahu and S. N. Behera, Phys. Rev. A, Vol.66, No.013208 (2002).
    59. H. Sakai, Surf. Sci., Vol.351, p.285, (1996).
    60. K. J. Hanszen, Z. Phys. Vol.157, p.523 (1960).
    61. Dan V. Goia, J. Mater. Chem., Vol.14 , p.451–458, (2004)
    62. Clemens Burda, , Xiaobo Chen, Radha Narayanan, and Mostafa A. El-Sayed, Chem. Rev., Vol.105, p.1025-1102, (2005)
    63. A. Filankembo and M. P. Pileni, J. Phys. Chem. B, Vol. 104, No. 25, (2000)
    64. M. P. Pileni, Nature Materials ,Vol. 2, p.145, (2003)
    65. C.L. Lee, C.C. Wan, Y.Y. Wang, Asv. Funct. Mater, Vol.11, p.334-347 (2001)
    66. Marie-Paule Pileni, C. R. Chimie, Vol.6 , p.965–978, (2003)
    67. Krisztian Niesz, Michael Grass, and Gabor A. Somorjai , Nano Lett., Vol. 5, No. 11, (2005)
    68. Chunlei Wang, Guangshan Zhu, Jian Li, Xiaohui Cai, Yuhong Wei, Daliang Zhang, and Shilun Qiu, Chem. Eur. J., Vol.11, p.4975 – 4982, (2005)
    69. Youyi Sun, Ding Wang, Jiangang Gao, Zhi Zheng, Qijin Zhang, Journal of Applied Polymer Science, Vol. 103, p.3701–3705 (2007)
    70. Lavinia Balana, RaphaJl Schneiderb, Denis Billauda, , Jaafar Ghanbaja, Materials Letters, Vol.59, p.1080–1084, (2005)
    71. Yong Wang,a Jim Y. Lee , and Theivanayagam C. Deivaraj , J. Mater. Chem. , Vol.14, p.362–365, (2004)
    72. M. I. Mendelson, J. Am. Ceram. Soc., Vol. 52, p.443 (1969) .
    73. L. Pieri, M. Bittelli, P.R. Pisa, Geoderma, Vol.135, p.118-132, (2006)
    74. N. Saunders, A.P. Miodownilc, ASM Handbook, Vol.3 , p.2178 (1990)
    75. P. Villars ,P. Alan, H.Okamoto, Handbook of ternary alloy phase diagrams, (1994)
    76. C. H. Kuo, C. H. Chen and Michael H. Huang, Adv. Funct. Mater., Vol.17, p.3773-3780 (2007)
    77. Xian-Hao Liu, Xiao-Hong Luo , Shu-Xia Lu , Jing-Chang Zhang , Wei-Liang Cao, Journal of Colloid and Interface Science., Vol.307, p.94–100, (2007)
    78. Z.M. Sui, X. Chen, L.Y. Wang, Y.C. Chai, C.J. Yang, J.K. Zhao, Chem. Lett. Vol.34, p.100, (2005)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE