研究生: |
邱奕霖 Chiou, Yi-Lin |
---|---|
論文名稱: |
基於凸分析之多通道盲蔽影像反捲積演算法 A Convex Analysis Based Multichannel Blind Image Deconvolution Algorithm |
指導教授: |
祁忠勇
Chi, Chong-Yung 詹宗翰 Chan, Tsung-Han |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 通訊工程研究所 Communications Engineering |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 中文 |
論文頁數: | 30 |
中文關鍵詞: | 多通道盲蔽影像反捲積 、凸分析 、子影像 、多輸入多輸出 |
外文關鍵詞: | multichannel blind image deconvolution, convex analysis, sub-images, MIMO |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
多通道盲蔽影像反捲積(multichannel blind image deconvolution, MBID)的問題是在沒有任何有關真實(原始)影像(true or original image)與模糊函數(blur function)的訊息下(除了一些基本的假設之外),如何從多張模糊影像(blurred image)中還原真實影像。在這篇論文中,我們用滑動的視窗將所有的模糊影像做資料重組,重新公式化多通道盲蔽影像反捲積的問題為一個多輸入多輸出(multi-input multi-output, MIMO)的問題,其中多個輸入是利用視窗所獲取真實影像中不同的子影像(sub-image)。然後利用凸分析與多個子影像間彼此的關係,我們提出一個基於凸分析之多通道盲蔽影像反捲積(a convex analysis based MBID, CAMBID)準則,及發展出其演算法,同時藉由最小平方解來實現這個準則。在雜訊不存在的情況下,我們證明基於凸分析之多通道盲蔽影像反捲積演算法對真實影像的鑑別能力。模擬資料顯示相對於其它現存的演算法,我們所提出的演算法在較高的訊雜比下有較好的性能,同時也需要較少的運算時間(computation time)。
The multichannel blind image deconvolution (MBID) problem is how to recover a single true (original) image from multiple blurred images without resorting to any prior knowledge about the true image and the blur functions (except for some general assumptions). In this thesis, we employ a sliding window which shifts over the whole blurred images for data rearrangement to formulate the MBID problem as a multi-input multi-output (MIMO) problem, where the multiple inputs correspond to different sub-images of the true image. By convex analysis and the relationship among these sub-images, we propose a convex analysis based MBID (CAMBID) criterion, and develop an algorithm that fulfills the criterion by the least squares solution. We show the true image identifiability of the CAMBID criterion in the absence of noise. Some simulation results are presented to demonstrate that our proposed algorithm provides better performance for higher SNRs and less computation time than several existing benchmark algorithms.
[1] M. R. Banham and A. K. Katsaggelos, “Digital image restoration,” IEEE Signal Processing Mag., vol. 14, no. 2, pp. 24-41, Mar. 1997.
[2] A. K. Katsaggelos, Ed., Digital Image Restoration. Berlin, Germany: Springer-Verlag, 1991.
[3] D. Kundur and D. Hatzinakos, “Blind image deconvolution,” IEEE Signal Process. Mag., vol. 13, no. 3, pp. 43-64, May 1996.
[4] P. Campisi and K. Egiazarian, Blind Image Deconvolution: Theory and Applications. Boca Raton, FL: CRC, 2007.
[5] G. Harikumar and Y. Bresler, “Perfect blind restoration of images blurred by multiple filters: Theory and efficient algorithms,” IEEE Trans. Image Process., vol. 8, no. 2, pp. 202-219, Feb. 1999.
[6] G. Harikumar and Y. Bresler, “Exact image deconvolution from multiple FIR blurs,” IEEE Trans. Image Process., vol. 8, no. 6, pp. 846-862, June 1999.
[7] W. Souidene, K. Abed-Meraim, and A. Beghdadi,“Deterministic techniques for multichannel blind image deconvolution,” in Proc. ISSPA, Sydney, Australia, Aug. 28-31, 2005, pp. 439-442.
[8] G. B. Giannakis and R. W. Heath, “Blind identification of multichannel FIR blurs and perfect image restoration,” IEEE Trans. Image Process., vol. 9, no. 11, pp. 1877-1896, Nov. 2000.
[9] W. Souidene, K. Abed-Meraim, and A. Beghdadi, “A new look to multichannel blind image deconvolution,” IEEE Trans. Image Process., vol. 18, no. 7, pp. 1487-1500, Nov. 2009.
[10] H. T. Pai and A. Bovik, “On eigenstructure-based direct multichannel blind image restoration,” IEEE Trans. Image Process, vol, 10, no. 10, pp. 1434-1446, Oct. 2001.
[11] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge Univ. Press, 2004.
[12] T.-H. Chan, W.-K. Ma, C.-Y. Chi, and Y. Wang, “A convex analysis framework for blind separation of non-negative sources,” IEEE Trans. Signal Process., vol. 56, no. 10, pp. 5120-5134, Oct. 2008.