簡易檢索 / 詳目顯示

研究生: 黃曰鴻
論文名稱: 在抽象凸空間中殆S − KKM 函數集的近似固定點定理
Approximate Fixed Point Theorem For The Class Almost S − KKM Mappings In Abstract Convex Spaces
指導教授: 張東輝
口試委員:
學位類別: 碩士
Master
系所名稱: 南大校區系所調整院務中心 - 應用數學系所
應用數學系所(English)
論文出版年: 2008
畢業學年度: 97
語文別: 中文
論文頁數: 17
中文關鍵詞: 殆S-KKM 性質殆凸抽象凸空間Φ-空間近似固定點固定點定理
外文關鍵詞: almost S-KKM property, almost convex, Abstract convex spaces, Φ- spases, Approximate fixed point, fixed point theorem
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本篇論文裡,我們用了抽象凸性質的概念,定義殆S-KKM性質,al-S-KKM(X,Y,Z)函數族,和殆Φ-空間。 我們得到一些殆 Φ-空間裡的新近似固定點定理和固定點定理。 我們的結果延伸運用到其他作者的一些結果。


    In this paper, we use the conception of the abstract convexity to define the almost S-KKM property, al-S-KKM(X,Y,Z)family, and almost Φ-spaces. We get some new approximate fixed point theorems and fixed point theorems in almost Φ-spaces. Our results extend some results of other authors.

    1. INTRODUCTION 2. PRELIMINARIES AND DEFINITIONS 3. MAIN RESULTS 4. REFERENCES

    [1] A. Amini, M. Fakhar, J. Zafarani, Fixed point theorem for the class mappings in abstract convex spaces, Nonlinear Anal. 66(2007), 14-21.
    [2] H. Ben-El-Mechaiekh, P. Deguire, A. Granas, Points fixes et coincidence pour les fonctions multivoques II(Applications de type et ), C. R. Acad. Sci. Paris Ser. I Math. 295 (1982), 381-384.
    [3] H. Ben-El-Mechaiekh, S. Chebbi, M. Florenzano, J.-L. Llinares, Abstract convexity and fixed points, J. Math. Anal.Appl. 222 (1998), 138-150.
    [4] F. E. Browder, The fixed point theory of multi-valued mappings in topological Vector spaces, Math. Ann. 177 (1968), 283-301.
    [5] T. H. Chang, Y. Y. Huang, J. C. Teng, K. W. Kuo, On the property and related topics, J. Math. Anal. Appl.229 (1999), 212-227.
    [6] T. H. Chang and C. L. Yen, property and fixed point theorems, J. Math. Anal. Appl. 203(1996), 224-235.
    [7] C. M. Chen, Fixed point theorem, theorem and its appli- cations, Department of Mathematics, NTNU, Taipei, Taiwan, ROC., (Dissertation, 2002)
    [8] C. M. Chen, Some fixed point theorems on an almost G-convex subset of a locally G-convex space and its applications, TAIWANESE JOURNAL OF MATHEMATICS, Vol. 10, No. 3, pp.797-805, March 2006
    [9] K. Fan, A generalization of Tychonoff’s fixed point theorem, Math. Ann. 142(1961), 305-310.
    [10] C. Horvath, Contractibility and generalized convexity, J. Math. Anal. Appl. 156 (1991), 341-357.
    [11] D. C. Kay, E. W. Womble, Axiomatic convexity theory and relation- ships the Caratheodory, Helly and Radon numbers, Pacific J. Math. 38(1971),34-49.
    [12] J. L. Kelly, General Topology, Van Nostrand, Princeton, NJ, 19- 55.
    [13] J. H. Kim, S. Park, Comments on some fixed point theorems in hyper- convex metric spaces, J. Math. Anal. Appl. 141(2003), 164-176.
    [14] B. Knaster, C. Kuratoaski and S. Mazurkiewicz, Ein Beweis des Fix- punksatzes fur n-dimensionale Simplexe, Fund. Math. 14(1929), 132-137
    [15] J. V. Llinares, Abstract convexity, some relations and applica- tions, Optimization 51(2003), 799-818.
    [16] S. Park, Fixed point of better admissible maps on generalized convex spaces, J. Korean Math. Soc. 37(2000), 885-899.
    [17] M. L. J. Van DE Vel, Theory of Convex Structure, Elsevier Science Publishers, 1992.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE