簡易檢索 / 詳目顯示

研究生: 洪世軒
Hong, Shi-Xuan
論文名稱: 由彈道傳輸量子干涉儀研究 環境引發相位去相干
Environment-Induced Dephasing Studied by Ballistic Quantum Interferometer
指導教授: 陳正中
Chen, Jeng-Chung
口試委員: 林大欽
Ling, Dah-Chin
吳憲昌
Wu, Hsien-Chang
陳永富
Chen, Yung-Fu
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 83
中文關鍵詞: 量子去相干性半導體物理介觀物理阿哈羅諾夫-玻姆振盪表面聲波
外文關鍵詞: quantum decoherence, semiconductor physics, mesoscopic physics, Aharonov-Bohm oscillation, surface acoustic wave
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文我們在研究環境幾何設計對電子相位去相干的影響。我們在砷化鎵/鋁砷化鎵異質結構上鍍上成對指叉式電極,建立偏好一個特定中心頻率(143MHz)的環境,在成對指叉式電極的中間放置一個圓環結構的量子干涉儀。在我們所建立的環境中由指叉式電極通入高頻訊號,透過量測圓環上的偏壓電流在外加磁場下產生的Aharonov-Bohm(AB)振盪的振幅來決定電子相位去相干的程度,我們發現在通入的高頻訊號頻率與環境中心頻率相同時,AB振盪的振幅並沒有明顯的衰減,而高頻訊號頻率偏離中心頻率時,AB振盪的振幅隨著高頻訊號功率上升而衰減。我們亦透過加入非中心頻率的高頻訊號,觀察功率對AB振盪振幅的關係,以及溫度對AB振盪振幅的關係,估計出在電子的相位弛豫時間飽和時,環境所提供的功率值。


    In this thesis, we investigate the influence of geometric design of environment on electron’s dephasing. We use pairs of interdigital transducer(IDT) to establish an environment which favors a central frequency(143 MHz). The devices are fabricated on the GaAs/AlxGa1-xAs heterostructures with two-dimensional electron gas. We measure Aharonov-Bohm(AB) oscillations in a ballistic ring which is placed between the IDT pair when submitted to a high-frequency signal into the environment by an IDT. We find that the AB amplitude will not obviously decrease when the submitted high-frequency signal’s frequency match the environment’s central frequency. And the AB amplitude will significantly decrease when the submitted high-frequency signal’s frequency is off the central frequency. Then we use a high-frequency signal with non-central frequency to induce dephasing. Use the power and temperature dependence of the AB amplitude, we can estimate how much power supplied by environment attribute to phase relaxation time saturation at low temperature.

    第一章 電子的量子相位及相位去相干性……………….………...………………1 1.1 電子的量子相位與量子干涉………………………………………………2 1.2 相位去相干性的物理機制…………………………………………………4 1.3 高頻電磁場下相位去相干現象……………………...….…………………7 1.4 環境因素對相位去相干之影響……………………...…………………10 1.5 極低溫下相位弛豫時間飽和現象………………..………………………11 1.6 實驗動機…………………………………………………………………12 第二章 實驗系統:二維電子氣系統、量子干涉儀、表面聲波……………..……..14 2.1 實驗想定…………………………………………………………………14 2.2 量子干涉儀………………………………………………………………14 2.2.1 特徵長度…………………………………………………………14 2.2.2 彈道傳輸下的Aharonov-Bohm效應……………………………16 2.3 砷化鎵/鋁砷化鎵異質結構與二維電子氣系統………………….………18 2.3.1 砷化鎵/鋁砷化鎵異質結構與二維電子氣系統……………….…18 2.3.2 低溫下二維電子氣系統的磁阻………………………..…………20 2.4 指叉式電極與表面聲波……………………………………..……………21 2.4.1 表面聲波基本特性……………………………..…………………21 2.4.2 指叉式電極………………………………..………………………22 2.4.3 表面聲波與二維電子氣系統交互作用……………..……………24 2.4.4 聲電流效應……………………………………..…………………25 2.5 表面聲波造成相位去相干……………………..…………………………26 2.6 相位弛豫時間飽和可能原因……………………………………………27 第三章 樣品設計與製程………………….………...…………………..…………29 3.1 樣品想定與設計…………………………………………………………29 3.2 樣品製程流程……………………………………………………………30 3.3 樣品製程細節……………………………………………………………36 3.4 樣品製程問題………………………….…………………………………39 第四章 樣品特徵,實驗想定與架設 ………….………...……………..…………44 4.1 樣品特徵…………………………………..………………………………44 4.1.1 樣品差異…………………………………………………………44 4.1.2 歐姆接觸………………………………………..…………………46 4.1.3 指叉式電極…………………………………….………………47 4.1.4 強磁場下二維電子氣的磁阻……………………………………55 4.1.5 Aharonov-Bohm圓環……………………..………………………57 第五章 實驗量測與結果討論 ……………..…….. ………...……………..……..60 5.1 實驗想定…………………………………………..………………………60 5.2 實驗架設…………………………………………..………………………60 5.3 實驗結果分析…………………………………..…………………………61 5.3.1 實驗一 : 數據與分析…………………………...………..………61 5.3.2 實驗一 : 結果討論………………………………...……..………67 5.3.3 實驗二 : 數據與分析………………………………...…..………69 5.3.4 實驗二 : 結果討論……………………………………….………73 5.4 結論………………………………………..………………………………73 第六章 未來展望……………………………..……………………………………75 參考文獻…………………………………………..…………………………………79 附錄一 蝕刻液之蝕刻率測量數據……………………………………..…………83

    [1] M. Schlosshauer, Rev. Mod. Phys. 76, 1267 (2005).
    [2] M. Yamamoto, S. Takada, C. Bauerle, K. Watanabe, A. D. Wieck, and S. Tarucha, Nat. Nanotechnol. 7, 247 (2012).
    [3] S. Hermelin, S. Takada, M. Yamamoto, S. Tarucha, A. D. Wieck, L. Saminadayar, C. Bäuerle, and T. Meunier, Nature (London) 477, 435 (2011).
    [4] R. P. Feynman, R. B. Leighton, and M. Sands, The Feynman Lectures on Physics Volume III Chapter 1. Addison-Wesley Publishing Company, London, 1965.
    [5] Y. Aharonov and D. Bohm, Significance of electromagnetic potentials in the quantum theory, Phys. Rev. 115, 485 (1959).
    [6] R. A. Webb, S. Washburn, C. P. Umbach, and R. B. Laibowitz, Phys. Rev. Lett. 54, 2696 (1985).
    [7] G. Timp, A. M. Chang, J. E. Cunningham, T. Y. Chang, P. Mankiewich, R. Behringer, and R. E. Howard, Phys. Rev. Lett. 58, 2814 (1987).
    [8] S. Russo, J. B. Oostinga, D. Wehenkel, H. B. Heersche, S. S. Sobhani, L. M. K. Vandersypen, and A. F. Morpurgo, Phys. Rev. B 77, 085413 (2008).
    [9] H. Peng, K. Lai, D. Kong, S. Meister, Y. Chen, X.-L. Qi, S.-C. Zhang, Z.-X. Shen, and Yi Cui, Nat. Mater. 9, 225 (2010).
    [10] ] K. Kobayashi, H. Aikawa, S. Katsumoto, and Y. Iye, Phys. Rev. Lett. 88, 256806 (2002).
    [11] N. Bachsoliani, S. Platonov, A. D. Wieck, and S. Ludwig, Phys. Rev. Applied 8, 064015 (2017).
    [12] N. Giordano, W. Gilson, and D. E. Prober Phys. Rev. Lett. 43, 725 (1979).
    [13] A. G. Huibers, M. Switkes, C. M. Marcus, K. Campman, and A. C. Gossard, Phys. Rev. Lett. 81, 200 (1998).
    [14] K. K. Choi, D. C. Tsui, and K. Alavi, Phys. Rev. B 36, 7751(R) (1987).
    [15] M. Casse ́, Z. D. Kvon, G. M. Gusev, E. B. Olshanetskii, L. V. Litvin, A. V. Plotnikov, D. K. Maude, and J. C. Portal, Phys. Rev. B 62, 2624 (2000).
    [16] A. E. Hansen, A. Kristensen, S. Pedersen, C. B. Sørensen, and P. E. Lindelof, Phys. Rev. B 64, 045327 (2001).
    [17] G. Seelig and M. Büttiker, Phys. Rev. B 64, 245313 (2001).
    [18] J. J. Lin and J. P. Bird, J. Phys. Condens. Matter. 14, R501 (2002).
    [19] B. L. Altshuler, M. E. Gershenson, and I. L. Aleiner, Physica E (Amsterdam) 3, 58 (1998).
    [20] Josef-Stefan Wenzler and Pritiraj Mohanty, Phys. Rev. B 77, 121102(R) (2008)
    [21] G. Seelig, S. Pilgram, A. N. Jordan, and M. Büttiker, Phys. Rev. B 68, 161310(R) (2003).
    [22] K. Kobayashi, H. Aikawa, S. Katsumoto, and Y. Iye, J. Phys. Soc. Jpn. 71, 2094 (2002).
    [23] K.-T. Lin, Y. Lin, C. C. Chi, J. C. Chen, T. Ueda, and S. Komiyama, Phys. Rev. B 81, 035312 (2010).
    [24] K. T. Lin, Y. Lin, C. C. Chi, and J. C. Chen, Phys. Rev. B 84, 235404 (2011).
    [25] Tung-Sheng Lo, Yiping Lin, Phillip M. Wu, Dah-Chin Ling, C. C. Chi, and Jeng-Chung Chen, Phys. Rev. Lett. 116, 080401 (2016).
    [26] G. Seelig, S. Pilgram, and M. Büttiker, Turk. J. Phys. 27, 331 (2003).
    [27] D. Natelson, R. L. Willett, K. W. West, and L. N. Pfeiffer, Phys. Rev. Lett. 86, 1821 (2001).
    [28] B. L. Altshuler, A. G. Aronov, and D. E. Khmelnitsky, J. Phys. C 15, 7367 (1982).
    [29] J. Vranken, C. Van Haesendonck, and Y. Bruynseraede, Phys. Rev. B 37, 8502(R) (1988).
    [30] P. Mohanty, E. M. Q. Jariwala, and R. A. Webb, Phys. Rev. Lett. 78, 3366 (1997).
    [31] P. Fournier, J. Higgins, H. Balci, E. Maiser, C. J. Lobb, and R. L. Greene, Phys. Rev. B 62, R11993(R) (2000).
    [32] R. M. Clarke, I. H. Chan, C. M. Marcus, C. I. Duruöz, J. S. Harris, Jr., K. Campman, and A. C. Gossard, Phys. Rev. B 52, 2656 (1995).
    [33] Ç. Kurdak, A. M. Chang, A. Chin, and T. Y. Chang, Phys. Rev. B 46, 6846 (1992).
    [34] C. K. Campbell, Surface Acoustic Wave Devices for Mobile and Wireless Communications, Academic Press, San Diego, 1997, chapter 6
    [35] E. Staples, J. Schoenwald, R. Rosenfeld and C. Hartmann, Ultrasonics Symp1974 IEEE, pp 11-14 (1974).
    [36] C. K. Campbell, Surface Acoustic Wave Devices for Mobile and Wireless Communications, Academic Press, San Diego, 1997, chapter 11
    [37] A. Wixforth, J. Scriba, M. Wassermeier, J. P. Kotthaus, G. Weimann, and W. Schlapp, Phys. Rev. B 40, 7874 (1989).
    [38] R. H. Parmenter, Phys. Rev. 89, 990 (1953).
    [39] Gabriel Weinreich, Phys. Rev. 104, 321 (1956).
    [40] Vladimir I. Fal’ko, S. V. Meshkov, and S. V. Iordanskii, Phys. Rev. B 47, 9910 (1993)
    [41] A. Esslinger, A. Wixforth, R. W. Winkler, J. P. Kotthaus, H. Nickel, W. Schlapp, and R. Losch, Solid State Commun. 84, 939 (1992).
    [42] M. Rotter, A. Wixforth, W. Ruile, D. Bernklau, and H. Riechert, Appl. Phys. Lett. 73, 2128 (1998)
    [43] W. Robbins, IEEE T. Son. Ultrason. 24, 339 (1977).

    [44] P. Y. Yu and M. Cardona, Fundamentals of Semiconductors: Physics and Materials Properties, 2nd ed. Springer-Verlag , Berlin, 1999.
    [45] M. J. A. Schuetz, E. M. Kessler, G. Giedke, L. M. K. Vandersypen, M. D. Lukin, and J. I. Cirac, Phys. Rev. X 5, 031031 (2015).
    [46] Y. M. Blanter and M. Büttiker, Phys. Rep. 336, 1 (2000).
    [47] A. Stern, Y. Aharonov, and Y. Imry, Phys. Rev. A 41, 3436 (1990).
    [48] L. Angers, A. Chepelianskii, R. Deblock, B. Reulet, and H. Bouchiat
    Phys. Rev. B 76, 075331 (2007).

    QR CODE