研究生: |
洪世軒 Hong, Shi-Xuan |
---|---|
論文名稱: |
由彈道傳輸量子干涉儀研究 環境引發相位去相干 Environment-Induced Dephasing Studied by Ballistic Quantum Interferometer |
指導教授: |
陳正中
Chen, Jeng-Chung |
口試委員: |
林大欽
Ling, Dah-Chin 吳憲昌 Wu, Hsien-Chang 陳永富 Chen, Yung-Fu |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 物理學系 Department of Physics |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 83 |
中文關鍵詞: | 量子去相干性 、半導體物理 、介觀物理 、阿哈羅諾夫-玻姆振盪 、表面聲波 |
外文關鍵詞: | quantum decoherence, semiconductor physics, mesoscopic physics, Aharonov-Bohm oscillation, surface acoustic wave |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文我們在研究環境幾何設計對電子相位去相干的影響。我們在砷化鎵/鋁砷化鎵異質結構上鍍上成對指叉式電極,建立偏好一個特定中心頻率(143MHz)的環境,在成對指叉式電極的中間放置一個圓環結構的量子干涉儀。在我們所建立的環境中由指叉式電極通入高頻訊號,透過量測圓環上的偏壓電流在外加磁場下產生的Aharonov-Bohm(AB)振盪的振幅來決定電子相位去相干的程度,我們發現在通入的高頻訊號頻率與環境中心頻率相同時,AB振盪的振幅並沒有明顯的衰減,而高頻訊號頻率偏離中心頻率時,AB振盪的振幅隨著高頻訊號功率上升而衰減。我們亦透過加入非中心頻率的高頻訊號,觀察功率對AB振盪振幅的關係,以及溫度對AB振盪振幅的關係,估計出在電子的相位弛豫時間飽和時,環境所提供的功率值。
In this thesis, we investigate the influence of geometric design of environment on electron’s dephasing. We use pairs of interdigital transducer(IDT) to establish an environment which favors a central frequency(143 MHz). The devices are fabricated on the GaAs/AlxGa1-xAs heterostructures with two-dimensional electron gas. We measure Aharonov-Bohm(AB) oscillations in a ballistic ring which is placed between the IDT pair when submitted to a high-frequency signal into the environment by an IDT. We find that the AB amplitude will not obviously decrease when the submitted high-frequency signal’s frequency match the environment’s central frequency. And the AB amplitude will significantly decrease when the submitted high-frequency signal’s frequency is off the central frequency. Then we use a high-frequency signal with non-central frequency to induce dephasing. Use the power and temperature dependence of the AB amplitude, we can estimate how much power supplied by environment attribute to phase relaxation time saturation at low temperature.
[1] M. Schlosshauer, Rev. Mod. Phys. 76, 1267 (2005).
[2] M. Yamamoto, S. Takada, C. Bauerle, K. Watanabe, A. D. Wieck, and S. Tarucha, Nat. Nanotechnol. 7, 247 (2012).
[3] S. Hermelin, S. Takada, M. Yamamoto, S. Tarucha, A. D. Wieck, L. Saminadayar, C. Bäuerle, and T. Meunier, Nature (London) 477, 435 (2011).
[4] R. P. Feynman, R. B. Leighton, and M. Sands, The Feynman Lectures on Physics Volume III Chapter 1. Addison-Wesley Publishing Company, London, 1965.
[5] Y. Aharonov and D. Bohm, Significance of electromagnetic potentials in the quantum theory, Phys. Rev. 115, 485 (1959).
[6] R. A. Webb, S. Washburn, C. P. Umbach, and R. B. Laibowitz, Phys. Rev. Lett. 54, 2696 (1985).
[7] G. Timp, A. M. Chang, J. E. Cunningham, T. Y. Chang, P. Mankiewich, R. Behringer, and R. E. Howard, Phys. Rev. Lett. 58, 2814 (1987).
[8] S. Russo, J. B. Oostinga, D. Wehenkel, H. B. Heersche, S. S. Sobhani, L. M. K. Vandersypen, and A. F. Morpurgo, Phys. Rev. B 77, 085413 (2008).
[9] H. Peng, K. Lai, D. Kong, S. Meister, Y. Chen, X.-L. Qi, S.-C. Zhang, Z.-X. Shen, and Yi Cui, Nat. Mater. 9, 225 (2010).
[10] ] K. Kobayashi, H. Aikawa, S. Katsumoto, and Y. Iye, Phys. Rev. Lett. 88, 256806 (2002).
[11] N. Bachsoliani, S. Platonov, A. D. Wieck, and S. Ludwig, Phys. Rev. Applied 8, 064015 (2017).
[12] N. Giordano, W. Gilson, and D. E. Prober Phys. Rev. Lett. 43, 725 (1979).
[13] A. G. Huibers, M. Switkes, C. M. Marcus, K. Campman, and A. C. Gossard, Phys. Rev. Lett. 81, 200 (1998).
[14] K. K. Choi, D. C. Tsui, and K. Alavi, Phys. Rev. B 36, 7751(R) (1987).
[15] M. Casse ́, Z. D. Kvon, G. M. Gusev, E. B. Olshanetskii, L. V. Litvin, A. V. Plotnikov, D. K. Maude, and J. C. Portal, Phys. Rev. B 62, 2624 (2000).
[16] A. E. Hansen, A. Kristensen, S. Pedersen, C. B. Sørensen, and P. E. Lindelof, Phys. Rev. B 64, 045327 (2001).
[17] G. Seelig and M. Büttiker, Phys. Rev. B 64, 245313 (2001).
[18] J. J. Lin and J. P. Bird, J. Phys. Condens. Matter. 14, R501 (2002).
[19] B. L. Altshuler, M. E. Gershenson, and I. L. Aleiner, Physica E (Amsterdam) 3, 58 (1998).
[20] Josef-Stefan Wenzler and Pritiraj Mohanty, Phys. Rev. B 77, 121102(R) (2008)
[21] G. Seelig, S. Pilgram, A. N. Jordan, and M. Büttiker, Phys. Rev. B 68, 161310(R) (2003).
[22] K. Kobayashi, H. Aikawa, S. Katsumoto, and Y. Iye, J. Phys. Soc. Jpn. 71, 2094 (2002).
[23] K.-T. Lin, Y. Lin, C. C. Chi, J. C. Chen, T. Ueda, and S. Komiyama, Phys. Rev. B 81, 035312 (2010).
[24] K. T. Lin, Y. Lin, C. C. Chi, and J. C. Chen, Phys. Rev. B 84, 235404 (2011).
[25] Tung-Sheng Lo, Yiping Lin, Phillip M. Wu, Dah-Chin Ling, C. C. Chi, and Jeng-Chung Chen, Phys. Rev. Lett. 116, 080401 (2016).
[26] G. Seelig, S. Pilgram, and M. Büttiker, Turk. J. Phys. 27, 331 (2003).
[27] D. Natelson, R. L. Willett, K. W. West, and L. N. Pfeiffer, Phys. Rev. Lett. 86, 1821 (2001).
[28] B. L. Altshuler, A. G. Aronov, and D. E. Khmelnitsky, J. Phys. C 15, 7367 (1982).
[29] J. Vranken, C. Van Haesendonck, and Y. Bruynseraede, Phys. Rev. B 37, 8502(R) (1988).
[30] P. Mohanty, E. M. Q. Jariwala, and R. A. Webb, Phys. Rev. Lett. 78, 3366 (1997).
[31] P. Fournier, J. Higgins, H. Balci, E. Maiser, C. J. Lobb, and R. L. Greene, Phys. Rev. B 62, R11993(R) (2000).
[32] R. M. Clarke, I. H. Chan, C. M. Marcus, C. I. Duruöz, J. S. Harris, Jr., K. Campman, and A. C. Gossard, Phys. Rev. B 52, 2656 (1995).
[33] Ç. Kurdak, A. M. Chang, A. Chin, and T. Y. Chang, Phys. Rev. B 46, 6846 (1992).
[34] C. K. Campbell, Surface Acoustic Wave Devices for Mobile and Wireless Communications, Academic Press, San Diego, 1997, chapter 6
[35] E. Staples, J. Schoenwald, R. Rosenfeld and C. Hartmann, Ultrasonics Symp1974 IEEE, pp 11-14 (1974).
[36] C. K. Campbell, Surface Acoustic Wave Devices for Mobile and Wireless Communications, Academic Press, San Diego, 1997, chapter 11
[37] A. Wixforth, J. Scriba, M. Wassermeier, J. P. Kotthaus, G. Weimann, and W. Schlapp, Phys. Rev. B 40, 7874 (1989).
[38] R. H. Parmenter, Phys. Rev. 89, 990 (1953).
[39] Gabriel Weinreich, Phys. Rev. 104, 321 (1956).
[40] Vladimir I. Fal’ko, S. V. Meshkov, and S. V. Iordanskii, Phys. Rev. B 47, 9910 (1993)
[41] A. Esslinger, A. Wixforth, R. W. Winkler, J. P. Kotthaus, H. Nickel, W. Schlapp, and R. Losch, Solid State Commun. 84, 939 (1992).
[42] M. Rotter, A. Wixforth, W. Ruile, D. Bernklau, and H. Riechert, Appl. Phys. Lett. 73, 2128 (1998)
[43] W. Robbins, IEEE T. Son. Ultrason. 24, 339 (1977).
[44] P. Y. Yu and M. Cardona, Fundamentals of Semiconductors: Physics and Materials Properties, 2nd ed. Springer-Verlag , Berlin, 1999.
[45] M. J. A. Schuetz, E. M. Kessler, G. Giedke, L. M. K. Vandersypen, M. D. Lukin, and J. I. Cirac, Phys. Rev. X 5, 031031 (2015).
[46] Y. M. Blanter and M. Büttiker, Phys. Rep. 336, 1 (2000).
[47] A. Stern, Y. Aharonov, and Y. Imry, Phys. Rev. A 41, 3436 (1990).
[48] L. Angers, A. Chepelianskii, R. Deblock, B. Reulet, and H. Bouchiat
Phys. Rev. B 76, 075331 (2007).