研究生: |
許嘉展 Hsu, Chia-Chan |
---|---|
論文名稱: |
FOXM1蛋白於活體中形成同源二聚體構型以調控基因轉錄活性 The conformation of FOXM1 homodimers in vivo is crucial for regulating transcriptional activities |
指導教授: |
王翊青
Wang, I-Ching |
口試委員: |
張壯榮
Chang, Chuang-Rung 李佳霖 Lee, Jia-Lin 王慧菁 Wang, Hui-Ching 趙瑞益 Chao, Jui-I 莊景凱 Juang, Jing-Kai |
學位類別: |
博士 Doctor |
系所名稱: |
生命科學暨醫學院 - 生物科技研究所 Biotechnology |
論文出版年: | 2024 |
畢業學年度: | 113 |
語文別: | 英文 |
論文頁數: | 93 |
中文關鍵詞: | 轉錄因子 、轉譯後修飾 、蛋白質交互作用 、蛋白質二聚體 、基因轉錄 |
外文關鍵詞: | Transcription factors, Post-translational modifications, Protein-protein interaction, Protein dimer, Gene transcription |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
轉錄因子的蛋白構型變化對其轉錄活性具有顯著影響。已知活化態的FOXM1轉錄因子能調控基因轉錄網絡,從而驅動細胞週期進程,這與癌症發展至關重要。然而,在細胞週期進程中,FOXM1的蛋白構型變化、其分子機制及其對轉錄活性的影響仍未完成明瞭。在本論文中,我們發現FOXM1蛋白在活細胞內以一種前所未見的分子間同源二聚體構型存在,且構型於細胞週期中會因變化而影響其轉錄活性。具體而言,透過螢光共振能量轉移(FRET)成像實驗,我們證明在G1期時,FOXM1的羧基(C)端轉錄活化域(TAD)中的αβα模體與其位於胺基(N)端抑制域(NRD)中的ββαβ模體相互作用,形成自我抑制的同源二聚化構型。隨著細胞週期進入S期到G2/M期,PLK1對αβα模體S715/S724位點進行磷酸化,進而改變αβα-ββαβ間的疏水性相互作用,從而促使αβα模體結構轉變而與新發現的內在無序區域(IDRs)發生結合,促使FOXM1形成一種自活化的同源二聚體,並持續存在到細胞質分裂。此外,我們分析出一段具生物功能的最小ββαβ模體序列,可在細胞培養實驗和小鼠腫瘤模型中有效抑制癌細胞增殖。透過了解此些FOXM1自我抑制機制,我們期望為開發出針對FOXM1的癌症治療新策略奠定基礎。
Conformational changes in a transcription factor can significantly alter its transcriptional activity in distinct ways. The activated form of the FOXM1 transcription factor regulates a complex network of gene expression essential for cell cycle progression and carcinogenesis. However, the mechanism regarding transcriptional activation of FOXM1 in response to conformational changes in vivo throughout the cell cycle progression remain unexplored. Here, we demonstrate that FOXM1 proteins form previously unreported intermolecular homodimerizations in vivo, and these conformational changes in FOXM1 homodimers impact activity during the cell cycle. Specifically, during the G1 phase, FOXM1 undergoes autorepressive homodimerization, wherein the αβα motif in the C-terminal transcriptional activation domain (TAD) interacts with the ββαβ motif in the N-terminal repression domain (NRD), as shown by FRET imaging. Phosphorylation of the αβα motif by PLK1 at S715/S724 weakens ββαβ-αβα hydrophobic interactions, thereby facilitating a conserved αβα motif switch binding partner to the novel intrinsically disordered regions (IDRs), leading to FOXM1 autostimulatory homodimerization persisting from the S phase to the G2/M phase in vivo. Furthermore, we identified a minimal ββαβ motif peptide that effectively restricts cancer cell proliferation both in cell culture and in a mouse tumor model, suggesting a promising autorepression approach for targeting FOXM1 in cancer therapy.
1. Thomas, M.C. and Chiang, C.M. (2006) The general transcription machinery and general cofactors. Crit Rev Biochem Mol Biol, 41, 105-178.
2. Wingender, E., Schoeps, T., Haubrock, M. and Donitz, J. (2015) TFClass: a classification of human transcription factors and their rodent orthologs. Nucleic Acids Res, 43, D97-102.
3. Lambert, S.A., Jolma, A., Campitelli, L.F., Das, P.K., Yin, Y., Albu, M., Chen, X., Taipale, J., Hughes, T.R. and Weirauch, M.T. (2018) The Human Transcription Factors. Cell, 175, 598-599.
4. Boija, A., Klein, I.A., Sabari, B.R., Dall'Agnese, A., Coffey, E.L., Zamudio, A.V., Li, C.H., Shrinivas, K., Manteiga, J.C., Hannett, N.M. et al. (2018) Transcription Factors Activate Genes through the Phase-Separation Capacity of Their Activation Domains. Cell, 175, 1842-1855 e1816.
5. Sanborn, A.L., Yeh, B.T., Feigerle, J.T., Hao, C.V., Townshend, R.J., Lieberman Aiden, E., Dror, R.O. and Kornberg, R.D. (2021) Simple biochemical features underlie transcriptional activation domain diversity and dynamic, fuzzy binding to Mediator. Elife, 10, e68068.
6. Udupa, A., Kotha, S.R. and Staller, M.V. (2024) Commonly asked questions about transcriptional activation domains. Curr Opin Struct Biol, 84, 102732.
7. Beckett, D. (2001) Regulated assembly of transcription factors and control of transcription initiation. J Mol Biol, 314, 335-352.
8. Amoutzias, G.D., Robertson, D.L., Van de Peer, Y. and Oliver, S.G. (2008) Choose your partners: dimerization in eukaryotic transcription factors. Trends Biochem Sci, 33, 220-229.
9. Delgoffe, G.M. and Vignali, D.A. (2013) STAT heterodimers in immunity: A mixed message or a unique signal? JAKSTAT, 2, e23060.
10. Xhani, S., Lee, S., Kim, H.M., Wang, S., Esaki, S., Ha, V.L.T., Khanezarrin, M., Fernandez, G.L., Albrecht, A.V., Aramini, J.M. et al. (2020) Intrinsic disorder controls two functionally distinct dimers of the master transcription factor PU.1. Sci Adv, 6, eaay3178.
11. Korver, W., Roose, J., Heinen, K., Weghuis, D.O., de Bruijn, D., van Kessel, A.G. and Clevers, H. (1997) The human TRIDENT/HFH-11/FKHL16 gene: structure, localization, and promoter characterization. Genomics, 46, 435-442.
12. Littler, D.R., Alvarez-Fernandez, M., Stein, A., Hibbert, R.G., Heidebrecht, T., Aloy, P., Medema, R.H. and Perrakis, A. (2010) Structure of the FoxM1 DNA-recognition domain bound to a promoter sequence. Nucleic Acids Res, 38, 4527-4538.
13. Varadi, M., Anyango, S., Deshpande, M., Nair, S., Natassia, C., Yordanova, G., Yuan, D., Stroe, O., Wood, G., Laydon, A. et al. (2022) AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res, 50, D439-D444.
14. Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Zidek, A., Potapenko, A. et al. (2021) Highly accurate protein structure prediction with AlphaFold. Nature, 596, 583-589.
15. Laoukili, J., Alvarez, M., Meijer, L.A., Stahl, M., Mohammed, S., Kleij, L., Heck, A.J. and Medema, R.H. (2008) Activation of FoxM1 during G2 requires cyclin A/Cdk-dependent relief of autorepression by the FoxM1 N-terminal domain. Mol Cell Biol, 28, 3076-3087.
16. Korver, W., Roose, J. and Clevers, H. (1997) The winged-helix transcription factor Trident is expressed in cycling cells. Nucleic Acids Res, 25, 1715-1719.
17. Ye, H., Kelly, T.F., Samadani, U., Lim, L., Rubio, S., Overdier, D.G., Roebuck, K.A. and Costa, R.H. (1997) Hepatocyte nuclear factor 3/fork head homolog 11 is expressed in proliferating epithelial and mesenchymal cells of embryonic and adult tissues. Mol Cell Biol, 17, 1626-1641.
18. Krupczak-Hollis, K., Wang, X., Kalinichenko, V.V., Gusarova, G.A., Wang, I.C., Dennewitz, M.B., Yoder, H.M., Kiyokawa, H., Kaestner, K.H. and Costa, R.H. (2004) The mouse Forkhead Box m1 transcription factor is essential for hepatoblast mitosis and development of intrahepatic bile ducts and vessels during liver morphogenesis. Dev Biol, 276, 74-88.
19. Kalinichenko, V.V., Gusarova, G.A., Tan, Y., Wang, I.C., Major, M.L., Wang, X., Yoder, H.M. and Costa, R.H. (2003) Ubiquitous expression of the forkhead box M1B transgene accelerates proliferation of distinct pulmonary cell types following lung injury. J Biol Chem, 278, 37888-37894.
20. Wang, X., Hung, N.J. and Costa, R.H. (2001) Earlier expression of the transcription factor HFH-11B diminishes induction of p21(CIP1/WAF1) levels and accelerates mouse hepatocyte entry into S-phase following carbon tetrachloride liver injury. Hepatology, 33, 1404-1414.
21. Huang, X., Zhang, X., Machireddy, N., Evans, C.E., Trewartha, S.D., Hu, G., Fang, Y., Mutlu, G.M., Wu, D. and Zhao, Y.Y. (2023) Endothelial FoxM1 reactivates aging-impaired endothelial regeneration for vascular repair and resolution of inflammatory lung injury. Sci Transl Med, 15, eabm5755.
22. Korver, W., Schilham, M.W., Moerer, P., van den Hoff, M.J., Dam, K., Lamers, W.H., Medema, R.H. and Clevers, H. (1998) Uncoupling of S phase and mitosis in cardiomyocytes and hepatocytes lacking the winged-helix transcription factor Trident. Curr Biol, 8, 1327-1330.
23. Ramakrishna, S., Kim, I.M., Petrovic, V., Malin, D., Wang, I.C., Kalin, T.V., Meliton, L., Zhao, Y.Y., Ackerson, T., Qin, Y. et al. (2007) Myocardium defects and ventricular hypoplasia in mice homozygous null for the Forkhead Box M1 transcription factor. Dev Dyn, 236, 1000-1013.
24. Zeng, J., Wang, L., Li, Q., Li, W., Bjorkholm, M., Jia, J. and Xu, D. (2009) FoxM1 is up-regulated in gastric cancer and its inhibition leads to cellular senescence, partially dependent on p27 kip1. J Pathol, 218, 419-427.
25. Wang, I.C., Chen, Y.J., Hughes, D., Petrovic, V., Major, M.L., Park, H.J., Tan, Y., Ackerson, T. and Costa, R.H. (2005) Forkhead box M1 regulates the transcriptional network of genes essential for mitotic progression and genes encoding the SCF (Skp2-Cks1) ubiquitin ligase. Mol Cell Biol, 25, 10875-10894.
26. Chand, V., Liao, X., Guzman, G., Benevolenskaya, E. and Raychaudhuri, P. (2022) Hepatocellular carcinoma evades RB1-induced senescence by activating the FOXM1-FOXO1 axis. Oncogene, 41, 3778-3790.
27. Li, S.K., Smith, D.K., Leung, W.Y., Cheung, A.M., Lam, E.W., Dimri, G.P. and Yao, K.M. (2008) FoxM1c counteracts oxidative stress-induced senescence and stimulates Bmi-1 expression. J Biol Chem, 283, 16545-16553.
28. Carter, S.L., Eklund, A.C., Kohane, I.S., Harris, L.N. and Szallasi, Z. (2006) A signature of chromosomal instability inferred from gene expression profiles predicts clinical outcome in multiple human cancers. Nat Genet, 38, 1043-1048.
29. Yang, D.K., Son, C.H., Lee, S.K., Choi, P.J., Lee, K.E. and Roh, M.S. (2009) Forkhead box M1 expression in pulmonary squamous cell carcinoma: correlation with clinicopathologic features and its prognostic significance. Hum Pathol, 40, 464-470.
30. Chu, X.Y., Zhu, Z.M., Chen, L.B., Wang, J.H., Su, Q.S., Yang, J.R., Lin, Y., Xue, L.J., Liu, X.B. and Mo, X.B. (2012) FOXM1 expression correlates with tumor invasion and a poor prognosis of colorectal cancer. Acta Histochem, 114, 755-762.
31. Xu, N., Jia, D., Chen, W., Wang, H., Liu, F., Ge, H., Zhu, X., Song, Y., Zhang, X., Zhang, D. et al. (2013) FoxM1 is associated with poor prognosis of non-small cell lung cancer patients through promoting tumor metastasis. PLoS One, 8, e59412.
32. Wen, N., Wang, Y., Wen, L., Zhao, S.H., Ai, Z.H., Wang, Y., Wu, B., Lu, H.X., Yang, H., Liu, W.C. et al. (2014) Overexpression of FOXM1 predicts poor prognosis and promotes cancer cell proliferation, migration and invasion in epithelial ovarian cancer. J Transl Med, 12, 134.
33. Wang, I.C., Zhang, Y., Snyder, J., Sutherland, M.J., Burhans, M.S., Shannon, J.M., Park, H.J., Whitsett, J.A. and Kalinichenko, V.V. (2010) Increased expression of FoxM1 transcription factor in respiratory epithelium inhibits lung sacculation and causes Clara cell hyperplasia. Dev Biol, 347, 301-314.
34. Wang, I.C., Ustiyan, V., Zhang, Y., Cai, Y., Kalin, T.V. and Kalinichenko, V.V. (2014) Foxm1 transcription factor is required for the initiation of lung tumorigenesis by oncogenic Kras(G12D.). Oncogene, 33, 5391-5396.
35. Liang, S.K., Hsu, C.C., Song, H.L., Huang, Y.C., Kuo, C.W., Yao, X., Li, C.C., Yang, H.C., Hung, Y.L., Chao, S.Y. et al. (2021) FOXM1 is required for small cell lung cancer tumorigenesis and associated with poor clinical prognosis. Oncogene, 40, 4847-4858.
36. Yoshida, Y., Wang, I.C., Yoder, H.M., Davidson, N.O. and Costa, R.H. (2007) The forkhead box M1 transcription factor contributes to the development and growth of mouse colorectal cancer. Gastroenterology, 132, 1420-1431.
37. Kurahashi, T., Yoshida, Y., Ogura, S., Egawa, M., Furuta, K., Hikita, H., Kodama, T., Sakamori, R., Kiso, S., Kamada, Y. et al. (2020) Forkhead Box M1 Transcription Factor Drives Liver Inflammation Linking to Hepatocarcinogenesis in Mice. Cell Mol Gastroenterol Hepatol, 9, 425-446.
38. Kalinichenko, V.V., Major, M.L., Wang, X., Petrovic, V., Kuechle, J., Yoder, H.M., Dennewitz, M.B., Shin, B., Datta, A., Raychaudhuri, P. et al. (2004) Foxm1b transcription factor is essential for development of hepatocellular carcinomas and is negatively regulated by the p19ARF tumor suppressor. Genes Dev, 18, 830-850.
39. Millour, J., Constantinidou, D., Stavropoulou, A.V., Wilson, M.S., Myatt, S.S., Kwok, J.M., Sivanandan, K., Coombes, R.C., Medema, R.H., Hartman, J. et al. (2010) FOXM1 is a transcriptional target of ERalpha and has a critical role in breast cancer endocrine sensitivity and resistance. Oncogene, 29, 2983-2995.
40. Ziegler, Y., Laws, M.J., Sanabria Guillen, V., Kim, S.H., Dey, P., Smith, B.P., Gong, P., Bindman, N., Zhao, Y., Carlson, K. et al. (2019) Suppression of FOXM1 activities and breast cancer growth in vitro and in vivo by a new class of compounds. NPJ Breast Cancer, 5, 45.
41. Bornstein, G., Bloom, J., Sitry-Shevah, D., Nakayama, K., Pagano, M. and Hershko, A. (2003) Role of the SCFSkp2 ubiquitin ligase in the degradation of p21Cip1 in S phase. J Biol Chem, 278, 25752-25757.
42. Wang, I.C., Chen, Y.J., Hughes, D.E., Ackerson, T., Major, M.L., Kalinichenko, V.V., Costa, R.H., Raychaudhuri, P., Tyner, A.L. and Lau, L.F. (2008) FoxM1 regulates transcription of JNK1 to promote the G1/S transition and tumor cell invasiveness. J Biol Chem, 283, 20770-20778.
43. Wang, X., Quail, E., Hung, N.J., Tan, Y., Ye, H. and Costa, R.H. (2001) Increased levels of forkhead box M1B transcription factor in transgenic mouse hepatocytes prevent age-related proliferation defects in regenerating liver. Proc Natl Acad Sci U S A, 98, 11468-11473.
44. Wang, X., Kiyokawa, H., Dennewitz, M.B. and Costa, R.H. (2002) The Forkhead Box m1b transcription factor is essential for hepatocyte DNA replication and mitosis during mouse liver regeneration. Proc Natl Acad Sci U S A, 99, 16881-16886.
45. Lee, Y., Kim, K.H., Kim, D.G., Cho, H.J., Kim, Y., Rheey, J., Shin, K., Seo, Y.J., Choi, Y.S., Lee, J.I. et al. (2015) FoxM1 Promotes Stemness and Radio-Resistance of Glioblastoma by Regulating the Master Stem Cell Regulator Sox2. PLoS One, 10, e0137703.
46. Bao, B., Wang, Z., Ali, S., Kong, D., Banerjee, S., Ahmad, A., Li, Y., Azmi, A.S., Miele, L. and Sarkar, F.H. (2011) Over-expression of FoxM1 leads to epithelial-mesenchymal transition and cancer stem cell phenotype in pancreatic cancer cells. J Cell Biochem, 112, 2296-2306.
47. Zhang, N., Wei, P., Gong, A., Chiu, W.T., Lee, H.T., Colman, H., Huang, H., Xue, J., Liu, M., Wang, Y. et al. (2011) FoxM1 promotes beta-catenin nuclear localization and controls Wnt target-gene expression and glioma tumorigenesis. Cancer Cell, 20, 427-442.
48. Xie, Z., Tan, G., Ding, M., Dong, D., Chen, T., Meng, X., Huang, X. and Tan, Y. (2010) Foxm1 transcription factor is required for maintenance of pluripotency of P19 embryonal carcinoma cells. Nucleic Acids Res, 38, 8027-8038.
49. Dai, B., Kang, S.H., Gong, W., Liu, M., Aldape, K.D., Sawaya, R. and Huang, S. (2007) Aberrant FoxM1B expression increases matrix metalloproteinase-2 transcription and enhances the invasion of glioma cells. Oncogene, 26, 6212-6219.
50. Zhang, Y., Zhang, N., Dai, B., Liu, M., Sawaya, R., Xie, K. and Huang, S. (2008) FoxM1B transcriptionally regulates vascular endothelial growth factor expression and promotes the angiogenesis and growth of glioma cells. Cancer Res, 68, 8733-8742.
51. Ma, R.Y., Tong, T.H., Cheung, A.M., Tsang, A.C., Leung, W.Y. and Yao, K.M. (2005) Raf/MEK/MAPK signaling stimulates the nuclear translocation and transactivating activity of FOXM1c. J Cell Sci, 118, 795-806.
52. Luscher-Firzlaff, J.M., Lilischkis, R. and Luscher, B. (2006) Regulation of the transcription factor FOXM1c by Cyclin E/CDK2. FEBS Lett, 580, 1716-1722.
53. Chen, Y.J., Dominguez-Brauer, C., Wang, Z., Asara, J.M., Costa, R.H., Tyner, A.L., Lau, L.F. and Raychaudhuri, P. (2009) A conserved phosphorylation site within the forkhead domain of FoxM1B is required for its activation by cyclin-CDK1. J Biol Chem, 284, 30695-30707.
54. Fu, Z., Malureanu, L., Huang, J., Wang, W., Li, H., van Deursen, J.M., Tindall, D.J. and Chen, J. (2008) Plk1-dependent phosphorylation of FoxM1 regulates a transcriptional programme required for mitotic progression. Nat Cell Biol., 10, 1076-1082.
55. Dibb, M., Han, N., Choudhury, J., Hayes, S., Valentine, H., West, C., Sharrocks, A.D. and Ang, Y.S. (2015) FOXM1 and polo-like kinase 1 are co-ordinately overexpressed in patients with gastric adenocarcinomas. BMC Res Notes, 8, 676.
56. Dibb, M., Han, N., Choudhury, J., Hayes, S., Valentine, H., West, C., Ang, Y.S. and Sharrocks, A.D. (2012) The FOXM1-PLK1 axis is commonly upregulated in oesophageal adenocarcinoma. Br J Cancer, 107, 1766-1775.
57. Fan, W., Ma, H. and Jin, B. (2022) Expression of FOXM1 and PLK1 predicts prognosis of patients with hepatocellular carcinoma. Oncol Lett, 23, 146.
58. Anders, L., Ke, N., Hydbring, P., Choi, Y.J., Widlund, H.R., Chick, J.M., Zhai, H., Vidal, M., Gygi, S.P., Braun, P. et al. (2011) A systematic screen for CDK4/6 substrates links FOXM1 phosphorylation to senescence suppression in cancer cells. Cancer Cell, 20, 620-634.
59. Park, H.J., Wang, Z., Costa, R.H., Tyner, A., Lau, L.F. and Raychaudhuri, P. (2008) An N-terminal inhibitory domain modulates activity of FoxM1 during cell cycle. Oncogene, 27, 1696-1704.
60. Marceau, A.H., Brison, C.M., Nerli, S., Arsenault, H.E., McShan, A.C., Chen, E., Lee, H.W., Benanti, J.A., Sgourakis, N.G. and Rubin, S.M. (2019) An order-to-disorder structural switch activates the FoxM1 transcription factor. Elife, 8, e46131.
61. Drozdetskiy, A., Cole, C., Procter, J. and Barton, G.J. (2015) JPred4: a protein secondary structure prediction server. Nucleic Acids Res, 43, W389-394.
62. Meerbrey, K.L., Hu, G., Kessler, J.D., Roarty, K., Li, M.Z., Fang, J.E., Herschkowitz, J.I., Burrows, A.E., Ciccia, A., Sun, T. et al. (2011) The pINDUCER lentiviral toolkit for inducible RNA interference in vitro and in vivo. Proc Natl Acad Sci U S A, 108, 3665-3670.
63. Major, M.L., Lepe, R. and Costa, R.H. (2004) Forkhead box M1B transcriptional activity requires binding of Cdk-cyclin complexes for phosphorylation-dependent recruitment of p300/CBP coactivators. Mol Cell Biol, 24, 2649-2661.
64. Mockli, N. and Auerbach, D. (2004) Quantitative beta-galactosidase assay suitable for high-throughput applications in the yeast two-hybrid system. Biotechniques, 36, 872-876.
65. Gietz, R.D. and Woods, R.A. (2001) Genetic transformation of yeast. Biotechniques, 30, 816-820, 822-816, 828 passim.
66. Vojtek, A.B., Hollenberg, S.M. and Cooper, J.A. (1993) Mammalian Ras interacts directly with the serine/threonine kinase Raf. Cell, 74, 205-214.
67. Feige, J.N., Sage, D., Wahli, W., Desvergne, B. and Gelman, L. (2005) PixFRET, an ImageJ plug-in for FRET calculation that can accommodate variations in spectral bleed-throughs. Microsc Res Tech, 68, 51-58.
68. Voss, S., Klewer, L. and Wu, Y.W. (2015) Chemically induced dimerization: reversible and spatiotemporal control of protein function in cells. Curr Opin Chem Biol, 28, 194-201.
69. Laoukili, J., Alvarez-Fernandez, M., Stahl, M. and Medema, R.H. (2008) FoxM1 is degraded at mitotic exit in a Cdh1-dependent manner. Cell Cycle, 7, 2720-2726.
70. Park, H.J., Costa, R.H., Lau, L.F., Tyner, A.L. and Raychaudhuri, P. (2008) Anaphase-promoting complex/cyclosome-CDH1-mediated proteolysis of the forkhead box M1 transcription factor is critical for regulated entry into S phase. Mol Cell Biol, 28, 5162-5171.
71. Wang, I.C., Meliton, L., Tretiakova, M., Costa, R.H., Kalinichenko, V.V. and Kalin, T.V. (2008) Transgenic expression of the forkhead box M1 transcription factor induces formation of lung tumors. Oncogene, 27, 4137-4149.
72. Tompa, P. and Fuxreiter, M. (2008) Fuzzy complexes: polymorphism and structural disorder in protein-protein interactions. Trends Biochem Sci, 33, 2-8.
73. Liu, J., Perumal, N.B., Oldfield, C.J., Su, E.W., Uversky, V.N. and Dunker, A.K. (2006) Intrinsic disorder in transcription factors. Biochemistry, 45, 6873-6888.
74. Minezaki, Y., Homma, K., Kinjo, A.R. and Nishikawa, K. (2006) Human transcription factors contain a high fraction of intrinsically disordered regions essential for transcriptional regulation. J Mol Biol, 359, 1137-1149.
75. Dyson, H.J. and Wright, P.E. (2005) Intrinsically unstructured proteins and their functions. Nat Rev Mol Cell Biol, 6, 197-208.
76. van der Lee, R., Buljan, M., Lang, B., Weatheritt, R.J., Daughdrill, G.W., Dunker, A.K., Fuxreiter, M., Gough, J., Gsponer, J., Jones, D.T. et al. (2014) Classification of intrinsically disordered regions and proteins. Chem Rev, 114, 6589-6631.
77. Holtrich, U., Wolf, G., Brauninger, A., Karn, T., Bohme, B., Rubsamen-Waigmann, H. and Strebhardt, K. (1994) Induction and down-regulation of PLK, a human serine/threonine kinase expressed in proliferating cells and tumors. Proc Natl Acad Sci U S A, 91, 1736-1740.
78. Wolf, G., Elez, R., Doermer, A., Holtrich, U., Ackermann, H., Stutte, H.J., Altmannsberger, H.M., Rubsamen-Waigmann, H. and Strebhardt, K. (1997) Prognostic significance of polo-like kinase (PLK) expression in non-small cell lung cancer. Oncogene, 14, 543-549.
79. Spankuch-Schmitt, B., Wolf, G., Solbach, C., Loibl, S., Knecht, R., Stegmuller, M., von Minckwitz, G., Kaufmann, M. and Strebhardt, K. (2002) Downregulation of human polo-like kinase activity by antisense oligonucleotides induces growth inhibition in cancer cells. Oncogene, 21, 3162-3171.
80. Mukhopadhyay, N.K., Chand, V., Pandey, A., Kopanja, D., Carr, J.R., Chen, Y.J., Liao, X. and Raychaudhuri, P. (2017) Plk1 Regulates the Repressor Function of FoxM1b by inhibiting its Interaction with the Retinoblastoma Protein. Sci Rep, 7, 46017.
81. Moore, X.T.R., Gheghiani, L. and Fu, Z. (2023) The Role of Polo-Like Kinase 1 in Regulating the Forkhead Box Family Transcription Factors. Cells, 12, 1344.
82. Wang, D., Qian, X., Du, Y.N., Sanchez-Solana, B., Chen, K., Kanigicherla, M., Jenkins, L.M., Luo, J., Eng, S., Park, B. et al. (2023) cProSite: A web based interactive platform for online proteomics, phosphoproteomics, and genomics data analysis. J Biotechnol Biomed, 6, 573-578.
83. Tomilin, A., Remenyi, A., Lins, K., Bak, H., Leidel, S., Vriend, G., Wilmanns, M. and Scholer, H.R. (2000) Synergism with the coactivator OBF-1 (OCA-B, BOB-1) is mediated by a specific POU dimer configuration. Cell, 103, 853-864.
84. Botquin, V., Hess, H., Fuhrmann, G., Anastassiadis, C., Gross, M.K., Vriend, G. and Scholer, H.R. (1998) New POU dimer configuration mediates antagonistic control of an osteopontin preimplantation enhancer by Oct-4 and Sox-2. Genes Dev, 12, 2073-2090.
85. Myatt, S.S., Kongsema, M., Man, C.W., Kelly, D.J., Gomes, A.R., Khongkow, P., Karunarathna, U., Zona, S., Langer, J.K., Dunsby, C.W. et al. (2014) SUMOylation inhibits FOXM1 activity and delays mitotic transition. Oncogene, 33, 4316-4329.
86. Laptenko, O., Tong, D.R., Manfredi, J. and Prives, C. (2016) The Tail That Wags the Dog: How the Disordered C-Terminal Domain Controls the Transcriptional Activities of the p53 Tumor-Suppressor Protein. Trends Biochem Sci, 41, 1022-1034.
87. Laptenko, O., Shiff, I., Freed-Pastor, W., Zupnick, A., Mattia, M., Freulich, E., Shamir, I., Kadouri, N., Kahan, T., Manfredi, J. et al. (2015) The p53 C terminus controls site-specific DNA binding and promotes structural changes within the central DNA binding domain. Mol Cell, 57, 1034-1046.
88. He, F., Borcherds, W., Song, T., Wei, X., Das, M., Chen, L., Daughdrill, G.W. and Chen, J. (2019) Interaction between p53 N terminus and core domain regulates specific and nonspecific DNA binding. Proc Natl Acad Sci U S A, 116, 8859-8868.
89. Sun, X., Dyson, H.J. and Wright, P.E. (2021) A phosphorylation-dependent switch in the disordered p53 transactivation domain regulates DNA binding. Proc Natl Acad Sci U S A, 118, e2021456118.
90. Hamard, P.J., Barthelery, N., Hogstad, B., Mungamuri, S.K., Tonnessen, C.A., Carvajal, L.A., Senturk, E., Gillespie, V., Aaronson, S.A., Merad, M. et al. (2013) The C terminus of p53 regulates gene expression by multiple mechanisms in a target- and tissue-specific manner in vivo. Genes Dev, 27, 1868-1885.
91. Sun, L., Ren, X., Wang, I.C., Pradhan, A., Zhang, Y., Flood, H.M., Han, B., Whitsett, J.A., Kalin, T.V. and Kalinichenko, V.V. (2017) The FOXM1 inhibitor RCM-1 suppresses goblet cell metaplasia and prevents IL-13 and STAT6 signaling in allergen-exposed mice. Sci Signal, 10, eaai8583.
92. Halasi, M., Hitchinson, B., Shah, B.N., Varaljai, R., Khan, I., Benevolenskaya, E.V., Gaponenko, V., Arbiser, J.L. and Gartel, A.L. (2018) Honokiol is a FOXM1 antagonist. Cell Death Dis, 9, 84.
93. Hegde, N.S., Sanders, D.A., Rodriguez, R. and Balasubramanian, S. (2011) The transcription factor FOXM1 is a cellular target of the natural product thiostrepton. Nat Chem, 3, 725-731.
94. Wang, S.P., Wu, S.Q., Huang, S.H., Tang, Y.X., Meng, L.Q., Liu, F., Zhu, Q.H. and Xu, Y.G. (2021) FDI-6 inhibits the expression and function of FOXM1 to sensitize BRCA-proficient triple-negative breast cancer cells to Olaparib by regulating cell cycle progression and DNA damage repair. Cell Death Dis, 12, 1138.
95. Radhakrishnan, S.K., Bhat, U.G., Hughes, D.E., Wang, I.C., Costa, R.H. and Gartel, A.L. (2006) Identification of a chemical inhibitor of the oncogenic transcription factor forkhead box M1. Cancer Res, 66, 9731-9735.
96. Zhang, Z., Xue, S.T., Gao, Y., Li, Y., Zhou, Z., Wang, J., Li, Z. and Liu, Z. (2022) Small molecule targeting FOXM1 DNA binding domain exhibits anti-tumor activity in ovarian cancer. Cell Death Discov, 8, 280.