研究生: |
王雅楨 Wang, Ya-Cheng. |
---|---|
論文名稱: |
多維複空間中緊緻集合多項式凸性的研究: 凱琳引理的一些應用 On polynomial convexity of compact sets in C^n: Some applications of Kallin's lemma |
指導教授: |
程守慶
Chen, So-Chin. |
口試委員: |
李大中
Lee, Tai-Chung 康素珍 Kan, Su-Jen |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 數學系 Department of Mathematics |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 英文 |
論文頁數: | 17 |
中文關鍵詞: | 多項式凸性 、多複變 、複分析 、均勻逼近 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
應用凱琳引理,討論多複變空間中緊緻集合的多項式凸性。如n維度複數空間中有限多個球、2維度複數空間中3個分離多圓盤、2維度複數空間中四面體之稜及n維度複數空間中的樹。
We discuss the polynomial convexity of compact sets in C^n by applying Kallin’s separation lemma. For example, finite number of balls in C^n, 3 disjoint polydiscs in C^2, edges of tetrahedron in C^2 and trees.
1.E. Kallin, Polynomial convexity: The three spheres problem, conference on complex analysis held in Minneapolis, 1964, Springer-Verlag, Berlin, 1965, pp. 301-304.
2. P.J. de Paepe, Eva Kallin’s lemma on polynomial convexity, Bull. London. Math. Soc. 33 (2001), 1-10.
3. E.L. Stout,Polynomial Convexity, Birkhauser ,U.S.A, 2007.
4. T.W. Gamelin, Uniform Algebras, Prentice Hall,Los Angeles,1969.
5.D.A. Marcus, Graph theory, Mathematical Association of America, U.S.A,2008.
6.C. Mueller, On the polynomial hull of two balls, The symposium on Complex Analysis held at the University of Wisconsin at Madison, 1991, American Mathematical Society, 1992, pp.343-350.
7.W. Rudin, Real and complex analysis, McGraw-Hill book company, Singapore, 1987.
8. A.M. Kytmanov and G. Khudaiberganov, Example of a nonpolynomially convex compactum consisting of three nonintersecting ellipsoids, Sibirsk. Mat. Zh. 25 (1984), no. 5, pp.196-198.
9.J.P. Rosay, The polynomial hull of nonconnected tube domains, and an example of E. Kallin, Bull. London Math. Soc. 21 (1989), 73-78.
10. G. Chartrand and P. Zhang, Introduction to Graph Theory, McGraw-Hill, New York, 2005, pp.3 and pp.23.