簡易檢索 / 詳目顯示

研究生: 沙尼瓦
Srinivasu v.p
論文名稱: IN SITU PRE-CONCENTRATION OF ANALYTES BY MINIATURIZED MICROFLUDIC AND DIELECTROPHORETIC DEVICES FOR NANOWIRE BIOSENSING APPLICATIONS
藉由微流體與介電電泳設計濃縮分析物以提升奈米線生物感測之研究
指導教授: 劉承賢
Liu, Cheng Hsien
口試委員: 楊裕雄
Yang, Yuh-Shyong
陳榮順
Chen, Rong-Shun
盧向成
Lu, Shiang-Cheng
彭慧玲
Peng, Hwei-Ling
劉承賢
Liu, Cheng Hsien
學位類別: 博士
Doctor
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 122
中文關鍵詞: 介電泳生物感測器濃縮微流體
外文關鍵詞: Dielectrophoresis, biosensing, concentration, microfludics
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • The ability to manipulate bioparticles is fundamental necessity and important in many modern biomedical technologies, including biosensors and biochips, tissue engineering, drug delivery and micro electro mechanical systems. Microfludic and dielectrophoretic (DEP) force method has attracted most attention due to its number of advantages. The goal of this research work is to develop Microfluidic and dielectrophoretic based miniaturized devices for pre-concentration of analytes and develop a comprehensive understanding of effects pre-concentration on electronic biosensing mechanism. These miniaturized devices have numerous advantages over others for low applied voltage, flexibility and compatibility for amalgamation into lab-on-a-chip devices. With optimized design of channel geometry, channel dimensions, electrode patterns, and properly selected operation condition, the miniaturized devices are integrated with poly-silicon nanowire field effect transistor (Poly-Si NW FET).
    Good degree of DNA pre-concentration was obtained by employing negative-DEP technique. SF-100 Xpress maskless photolithography system has been employed to fabricate Poly (ethylene glycol) diacrylate (PEG-DA) based insulating DEP constriction at low cost with saving time which is especially advantageous for developing micro-electro-mechanical systems. With use of iDEP technique we achieved pre-concentration at desired sensing region and the pre-concentration of low dielectric strength biomolecules (such as DNA), was undeterred by the lower biomolecular polarizability. Furthermore, Oxygen plasma treatment resulted in significant improved performance due to passivation of Si dangling-bond defects. The pH sensitivity of the device treated with oxygen plasma was 400 mV pH-1 which is a significant improvement for chemical sensing applications. Finally, inertial focusing was employed for effective DNA pre-concentration on Poly-Si NWFET and high sensitivity is ensured even with low concentration of target DNA. These results provided important information for the future development of the Poly-Si NWFET for a variety of biological sensing experiments


    Chapter 1: Introduction 1 1.1 Microfluidics and micro total analysis system 2 1.2 Bio/nano-particle manipulation 3 1.3 Importance of biomolecule pre-concentration 4 1.4 Different methods of bioparticle concentration/trapping 5 1.4.1 Non-electric trapping methods…………………………………………... ……..5 1.4.2 Electrokinetic trapping methods………………………………………... ……..7 1.5 Manipulation of particles by DEP 9 1.7 Inertial focusing of bio/nano-particles 11 1.8 Silicon Nanowire Biosensor for bio-medical applications. 12 1.9 Fabrication of Si-NWFETs 14 1.10 Aim of work and Thesis organization 14 Chapter 2: Theory and design 26 2.1 Dielectrophoretic concentrator for analyte pre-concentration 26 2.1.1 Working principle and design concept of the device…………………… ……26 2.2 Constriction-based (electrodeless) dielectrophoretic concentrator for analyte pre-concentration 28 2.2.1 Design concept and working principle…………………………………... ……28 2.3 Inertial focusing for analyte pre-concentration 30 Chapter 3: Experimental methods 36 3.1 Materials 36 3.2 Fabrication of n-DEP concentrator for DNA pre-concentration 36 3.3 Fabrication of iDEP insulating microstructure of PEG-DA 37 3.5 Electrical measurements on Poly-si NWFET devices 40 3.5.1 Back-gate control ……………………………………………………………40 3.5.2 Surface functionalization of the device with the captured DNA probe ……40 3.5.3 Threshold voltage ……………………………………………………………41 3.5.4 Transconductance …………………………………………………………....42 3.5.5 Field-Effect Mobility (µTH) ……………………………………………………42 3.5.6 Subthreshold slope ……………………………………………………………43 3.6 Fabrication of inertial focusing narrow microchannel for DNA pre- concentration. ………………………………………………………………………………………….44 3.7 Plasma treatment procedure for bonding the PDMS based inertial focusing microchannel 45 Chapter 4: Experimental results and discussion 52 4.1 Pre-concentrator using n-DEP 52 4.2 Poly-Si Nanowire FET electrical characteristics 53 4.3 Stability retention of PEG-DA microstructure 53 4.4 PEG-DA based iDEP pre-concentration of fluorescently labeled double-stranded DNA 55 4.5 Influence of oxygen plasma treatments on grain-boundary defects in polycrystalline silicon 60 4.6 Electrical responses of Poly-si NWFET under various pH conditions. 63 4.7 Optimization of flow rate after the Integration of inertial focusing narrow micro channel 66 4.8 Electrical responces from specific DNA/DNA interactions on the nanodevice 68 Chapter 5 : Conclusions and future work 90 5.1 Conclusions of this research work 90 5.2 Future work 91 References 92 Appendix 103 Curriculum vitae 116 Publications: 117

    [1] J. Nilsson, M. Evander, B. Hammarström, T. Laurell, “Review of cell and particle trapping in microfluidic systems” Analytica Chimica Acta 649 (2009) 141–157
    [2] S. Whitley Reviews of Modern Physics, “Review of the gas centrifuge until 1962. Part I: Principles of separation physics”, 56 (1984) 41-66
    [3] J. Gehl, “Electroporation: theory and methods, perspectives for drug delivery, gene therapy and research”, Acta Physiologica Scandinavica, 177 (2003) 437
    [4] D. G. Grier, “A revolution in optical manipulation”, Nature, 424 (2003) 810–816
    [5] M. Sigurdson, D. Wang and C. D. Meinhart, “Electrothermal stirring for heterogeneous immunoassays”, Lab Chip, 5 (2005) 1366-1373
    [6] P. E. Sheehan, and L. J. Whitman, “Detection Limits for Nanoscale
    Biosensors”, Nano Lett., 5 (2005) 803-807
    [7] C. M. Lin, Y. S. Lai, H. P. Liu, C. Y. Chen, and A. M. Wo, “Trapping of bioparticles via microvortices in a microfluidic device for bioassay applications”, ibid., 80 (2008) 8937
    [8] M. Tanyeri, E. M. Johnson-Chavarria, and C. M. Schroeder, “Efficient manipulation of microparticles in bubble streaming flows”, Appl. Phys. Lett., 96 (2010) 224101
    [9] D. Di Carlo, L. Y. Wu, and L. P. Lee, “Dynamic Single Cell Culture Array”, Lab Chip, 6 (2006) 1445
    [10] A. M. Skelley, O. Kirak, H. Suh, R. Jaenisch, and J. Voldman, “Microfluidic Control of Cell Pairing and Fusion”, Nat. Methods, (2009)147
    [11] W. H. Tan and S. Takeuchi, “A trap-and-release integrated microfluidic system for dynamic microarray applications”, Proc. Natl. Acad. Sci., 104 (2007) 1146
    [12] J. Khandurina, T. E. McKnight, S. C. Jacobson, L. C. Waters, R. S. Foote, and J. M. Ramsey, “Integrated System for Rapid PCR-Based DNA analysis in Microfluidic Devices”, Anal. Chem., 72 (13), (2000) 2995–3000
    [13] A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides”, ibid., 457 (2009) 71
    [14] J.R. Kovac, J. Voldman, Intuitive, “image-based cell sorting using opto-fluidic cell sorting”, Anal. Chem., 79 (2007) 9321.
    [15] C. Gosse and V. Croquette, “Magnetic tweezers: micromanipulation and force measurement at the molecular level”, Biophys. J., 82 (2002) 3314
    [16] H. Lee, A. M. Purdon, and R. M. Westervelt, “Manipulation of biological cells using a microelectromagnet matrix”, Appl. Phys. Lett., 85 (2004)1063
    [17] J. Yan, D. Skoko, and J. F. Marko, “Near-field-magnetic-tweezer manipulation of single DNA molecules”, Phys. Rev., E 70 (2004) 011905
    [18] H. M. Hertz, “Standing-wave acoustic trap for nonintrusive positioning of microparticles”, J. Appl. Phys., 78 (1995) 4845
    [19] M. Evander, L. Johansson, T. Lilliehorn, J. Piskur, M. Lindvall, S. Johansson, M. Almqvist, T. Laurell, and J. Nilsson, “Non-invasive acoustic cell trapping in a microfluidic perfusion system for on-line bioassays”, Anal. Chem., 79 (2007) 2984
    [20] K. Yosioka, Y. Kawasima, “Acoustic radiation pressure on a complete sphere”, Acoustica, 5 (1955) 167.
    [21] B. R. Lutz, J. Chen, and D. T. Schwartz, “Hydrodynamic Tweezers: 1. Non-contact cell trapping in a laminar oscillating flow”, Anal. Chem., 78 (2006) 5429
    [22] C. M. Lin, Y. S. Lai, H. P. Liu, C. Y. Chen, and A. M. Wo, “Trapping of bioparticles via microvortices in a microfluidic device for bioassay applications”, ibid., 80 (2008) 8937
    [23] M. Tanyeri, E. M. Johnson-Chavarria, and C. M. Schroeder, “Hydrodynamic trap for single particles and cells”, Appl. Phys. Lett., 96 (2010) 224101
    [24] D. Di Carlo, L. Y. Wu, and L. P. Lee, “Dynamic Single Cell Culture Array”, Lab Chip, 6 (2006) 1445
    [25] A. M. Skelley, O. Kirak, H. Suh, R. Jaenisch, and J. Voldman, “Microfluidic Control of Cell Pairing and Fusion”, Nat. Methods, 6 (2009) 147
    [26] B. Jung, R. Bharadwaj, and J. G.Santiago, “Thousandfold signal increase using field-amplified sample stacking for on-chip electrophoresis”, Electrophoresis, 24(19-20) (2003) 3476-3483
    [27] N. P. Beard, C.X. Zhang, and A. J. column, “In-column field-amplified sample stacking of biogenic amines on microfabricated electrophoresis devices”, Electrophoresis, 24 (2009) 732-739
    [28] H. Yang and R.L. Chien, “Sample stacking in laboratory-on-a-chip devices”, J. Chromatogr A, 924 (2001) 155-63
    [29] P. H. Humble, R. T. Kelly, A. T. Woolley, H. D. Tolley, and M. L. Lee, “Electric field gradient focusing of proteins based on shaped ionically conductive acrylic polymer”, Anal. Chem., 76(19) (2004) 5641–5648
    [30] N.G. Green, , H. Morgan, and J.J. Milner, “Manipulation and trapping of sub-micron bioparticles using dielectrophoresis”, Journal of Biochemical and Biophysical Methods, 35 (1997) 89-102.
    [31] T. Müller, et al., “A 3-D microelectrode system for handling and caging single cells and particles”, Biosensors and Bioelectronics, 14 (1999) 247-256.
    [32] H. Morgan, M.P. Hughes, and N.G. Green, “Separation of submicron bioparticles by dielectrophoresis”, Biophysical journal, 77, (1999) 516-525.
    [33] R. Pethig, “Dielectrophoresis: Status of the theory, technology, and applications”, Biomicrofluidics, 4 (2010) 022811-35.
    [34] R. Pethig et al., “Dielectrophoresis: A Review of Applications for Stem Cell Research”, Journal of Biomedicine and Biotechnology, 6 (2010) 135
    [35] M.P. Hughes, “Nanoelectromechanics in Enginnering and Biology”, CRC Press, Boca Raton, FL, 2003.
    [36] Pohl, H.A., “Dielectrophoresis”, Cambridge University Press, Cambridge, UK, (1978) 491-499.
    [37] Dino Di Carlo, “Inertial microfluidics”, Lab Chip, 2009, 9, 3038–3046
    [38] G. Segre and A. Silberberg, “Radial Particle Displacements in Poiseuille Flow of Suspensions”, Nature, 189 (1961) 209–210.
    [39] Y. Cui, Q.Q. Wei, H.K. Park, C.M. Lieber, “Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species”, Science, 293 (2001) 1289-1292
    [40] J. Kong, N.R. Franklin, C. Zhou, M.G. Chapline, S. Peng, K. Cho, H. Dai, “Nanotube molecular wires as chemical sensors”, Science, 287 (2000) 622-625.
    [41] A.P. Alivisatos, “Semiconductor Clusters, Nanocrystals, and Quantum Dots”, Science, 271 (1996) 933-937
    [42] K-I Chen, B-R Li , Y-T Chen, “Silicon nanowire field-effect transistor-based biosensors for biomedical diagnosis and cellular recording investigation”, Nano Today, 6 (2011) 131-154
    [43] J-I Hahm, C M. Lieber, “Direct ultrasensitive electrical detection of dna and dna sequence variations using nanowire”, Nanosensors, Nano Lett., 4, (2004), 51-54
    [44] M-C Chen, H-Y Chen, C-Y Lin , C-H Chien, T-F Hsieh , J-T Horng , J-T Qiu , C-C Huang , C-H Ho, F-L Yang. “A CMOS-Compatible Poly-Si Nanowire Device with Hybrid Sensor/Memory Characteristics for System-on-Chip Applications”, Sensors, 12 (2012) 3953-3963.
    [45] C-H Lin, C-H Hung , C-Y Hsiao , H-C Lin , F-H Ko , Y-S Yang, “Poly-silicon nanowire field-effect transistor for ultrasensitive and label-free detection of pathogenic avian influenza DNA”,
    Biosensors and Bioelectronics, 24 (2009) 3019–3024
    [46] G.-J. Zhang, A. Agarwal, K.D. Buddharaju, N. Singh, Z.-Q. Gao, “Accumulation mode field-effect transistors for improved sensitivity in nanowire-based biosensors”, Appl. Phys. Lett. 90 (2007) 233903.
    [47] A. Gao, N. Lu, P. Dai, T. Li, H. Pei, X. Gao, Y. Gong, Y. Wang, C. Fan, “Silicon-Nanowire-Based CMOS-Compatible Field-Effect Transistor Nanosensors for Ultrasensitive Electrical Detection of Nucleic Acids”, Nano Lett., 11 (2011) 3974-3978.
    [48] H.S. Lee, K.S. Kim, C.J. Kim, S.K. Hahn, M.H. Jo, "Electrical
    detection for cancer diagnoses using anti-vascular endotherial growth factor aptamer-modified si nanowire FETs”, Biosens. Bioelectron. 24 (2009) 1801-1805.
    [49] G.-J. Zhang, M. Huang, Z.H.H. Luo, G.K. Tay, E-J. Lim, E.T. Liu, J.S. Thomsen, “Highly sensitive and reversible silicon nanowire biosensor to study nuclear hormone receptor protein and response element DNA interactions”, Biosens. Bioelectron., 26 (2010) 365-370.
    [50] W.U. Wang, C. Chen, K.-h. Lin,Y. Fang, C.M. Lieber, “Label-free detection of small-molecule-protein interactions by using nanowire nanosensors”, Proc. Natl. Acad. Sci., USA 102 (2005) 3208-3212.
    [51] F. Patolsky, B.P. Timko, G. Yu, Y. Fang, A.B. Greytak, G. Zheng, C.M. Lieber, “Detection, Stimulation, and Inhibition of Neuronal Signals with High-Density Nanowire Transistor Arrays”, Science, 313 (2006) 1100-1104.
    [52] K-I Chen , B-R Li , Y-T Chen, “Silicon nanowire field-effect transistor-based biosensors for biomedical diagnosis and cellular recording investigation”, Nano today, 6 (2011) 131-154.
    [53] M.C. Lin, C.J. Chu, L.C. Tsai, H.Y. Lin, C.S. Wu, Y.P. Wu,
    Y.N. Wu, D.B. Shieh, Y.W. Su, C.D. Chen, “Control and detection of organosilane polarization on nanowire field-effect-transistors”, Nano Lett. 7 (2007) 3656-3661
    [54] F. Patolsky, G.F. Zheng, C.M. Lieber, “Fabrication of silicon nanowire devices for ultrasensitive, label-free, real-time detection of biological and chemical species”, Nat. Protoc., 1 (2006) 1711.
    [55] C-F Chou, J. O. Tegenfeldt, O. Bakajin, S. S. Chan, E. C. Cox, N. Darnton, T. Duke, R. H. Austin, “Electrodeless Dielectrophoresis of Single- and Double-Stranded DNA”, Biophysical Journal, 83 (2002) 2170–2179
    [56] B. H. Lapizco-Encinas, R. V. Davalos, B. A. Simmons, E.B.Cummings, Y. Fintschenko, “An insulator-based (electrodeless) dielectrophoretic concentrator for microbes in water”, Journal of Microbiological Methods, 62 (2005) 317–326.
    [57] K. P. Chen, J. R. Pacheco, M. A. Hayes, S. J. R. Staton, “Insulator-based dielectrophoretic separation of small particles in a sawtooth channel”, Electrophoresis, 30 (2009) 1441–1448
    [58] J. A. Schonberg and E. J. Hinch, “Inertial Migration of a Sphere in Poiseuille Flow”, J. Fluid Mech., 203 (1989) 517–524.
    [59] D. Di Carlo, D. Irimia, R. G. Tompkins and M. Toner, “Continuous inertial focusing, ordering, and separation of particles in microchannels”, Proc. Natl. Acad. Sci. 104 (2007) 18892–7.
    [60] E. S. Asmolov, “The Inertial Lift on a Spherical Particle in a Plane Poiseuille Flow at Large Channel Reynolds Number”, J. Fluid Mech., 381 (1999) 63–87.
    [61] A. A. S. Bhagat, S. S. Kuntaegowdanahalli and I. Papautsky, “Enhanced particle filtration in straight microchannels using shear modulated inertial migration”, Phys. Fluids, 20 (2008)101702–4.
    [62] C. Y. Hsiao, C. H. Lin, C. H. Hung, C. J. Su, Y. R. Lo, C. C. Lee, H. C. Lin, T. Y. Huang and Y. S. Yang, “Novel poly-silicon nanowire field effect transistor for biosensing application”, Biosens. Bioelectron. 24 (2009) 1223.
    [63] M. P. Lu, C. Y. Hsiao, P. Y. Lo, J. H. Wei, Y. S. Yang and M. J. Chen, “Semiconducting single-walled carbon nanotubes exposed to distilled water and aqueous solution: Electrical measurement and theoretical calculation”, Appl. Phys. Lett., 88 (2006) 053114.
    [64] Z. Liu, C. Hu, J. Huang, T. Chan, M. Jeng, P. Ko, and Y. Cheng, “Threshold Voltage Model for Deep-Submicrometer MOSFET’s,” IEEE Transactions on Electron Devices, 40 (1993) 86-95
    [65] S.M. Sze, “Physics of Semiconductor Devices”, CH6 MOSFTEs, Wiley-Interscience (1969)
    [66] Y. Xuan, Y. Wu, and P. Ye, “Effects of barrier layers on device performance of high mobility In0.7 Ga0.3 As metal-oxide-semiconductor field-effect-transistors”, IEEE Electron Device Lett. 29 (2008) 294
    [67] H. Zhao, D. Shahrjerdi, F. Zhu, H. Kim, I. Ok, M. Zhang, J. Yum, S.
    Banerjee, and J. C. Lee, “In situ passivation of InP surface using H2S during metal organic vapor phase epitaxy”, Appl. Phys. Lett., 92 (2008) 253506
    [68] S. Ikeda, S. Hashiba, I. Kuramoto, H. Katoh, S. Ariga, T. Yamanaka,
    T. Hashimoto, N. Hashimoto, and S. Meguro, “A polysilicon transistor technology for larger capacitance SRAM’s, in IEDM Tech. Dig.,(1990) 459–463.
    [69] H. N. Chern, C. L. Lee, and T. F. Lei, “The effects of H2-O2 plasma
    treatment on the characteristics of polysilicon thin-film transistors”,
    IEEE Trans. Electron Devices, 40 (1993) 2301–2306
    [70] N. H. Nickel, A. Yin, and S. J. Fonash, “Influence of hydrogen and oxygen plasma treatments on grain-boundary defects in polycrystalline silicon,” Appl. Phys. Lett., 65 (1994) 3099–3101
    [71] M. J. Tsai, F. S. Wang, K. L. Cheng, S. Y. Wang, M. S. Feng, and H.
    C. Cheng, “Characterization of H2 /N2 plasma passivation process for poly-Si thin-film transistors (TFT’s),” Solid State Electron, 38 (1995)1233–1238
    [72] C. K. Yang, T. F. Lei, and C. L. Lee, “Improved electrical characteristics of thin-film transistors fabricated on nitrogen-implanted polysilicon films in IEDM”, Tech. Dig., (1994) 505–508.
    [73] M. Hack, A. G. Lewis, and I.W. Wu, “Physical models for degrada-
    tion effects in polysilicon thin-film transistors,” IEEE Trans. Electron
    Devices, 40 (1993) 890–897
    [74] B. A. Khan and R. Pandya, “Activation-energy of source-drain current in hydrogenated and unhydrogenated polysilicon thin-films transistors,” IEEE Trans. Electron Devices, 37 (1990) 1727–1734
    [75] J.R. Ligenza, M. Kuhn, “DC arc anodic plasma oxidation, a new vacuum process for solid state device fabrication”, Solid State Technology 13 (12) (1970) 33-38.
    [76] A.T. Bell, Abstract: “fundamentals of plasma chemistry”, J. Vac. Sci. Technol., 16 (2) (1996) 418-419.
    [77] J.R. Ligenza, M. Kuhn, “DC arc anodic plasma oxidation, a new vacuum process for solid state device fabrication”, Solid State Technology 13 (12) (1970) 33–38
    [78] X. A. Gao, G. Zheng and C. Lieber, “Subthreshold Regime has the Optimal Sensitivity for Nanowire FET Biosensors”, Nano Lett., 10 (2010) 547–552.

    [79] O. Knopfmacher, A. Tarasov, W. Fu, M. Wipf, B. Niesen, M. Calame and C. Schonenberger, “Silicon-based ISFET shows negligible dependence on salt concentration at constant pH”, Nano Lett., 10 (2010) 2268–2274.
    [80] M. M. Rahman, and F. Gui, “Experimental measurements of fluid flow and heat transfer in microchannel cooling passages in a chip substrate”, Adv. Electron. Packaging., 199 (1993) 685.
    [81] W. Urbanek, J. N Zeemel, H. H Hau, “Electro-viscous effects on liquid flow in microchannels”, J. Micromech. Microengg., 3 (1993) 206.
    [82] J. N. Pfahler, “Liquid transport in micron and submicron size channels”, Ph.D. Thesis, Univ. of Pennsylvania, (1992)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE