簡易檢索 / 詳目顯示

研究生: 沈家傑
J.JShen
論文名稱: 固態儲氫式熱泵系統之研究
Study of Metal Hydride Heat Pump System
指導教授: 彭宗平
T.P.Perng
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2000
畢業學年度: 88
語文別: 中文
論文頁數: 74
中文關鍵詞: 儲氫材料P-C-T曲線卡計熱泵
外文關鍵詞: Metal Hydride, P-C-T Curve, Calorimetry, Heat Pump
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文分二部份進行,第一部份針對熱泵使用的儲氫材料進行材料性能評估,以選擇適當材料組合俾驅動熱泵在太陽能熱水TH=100~130℃和室溫水TM=30℃條件下,產生約TL=20℃冷卻水。製備LaNi5-xMx基合金,利用P-C-T儀器量測儲氫材料吸放氫性能,並利用卡計法量測其氫化熱。第二部份則為設計並組裝一套熱泵系統,將儲氫合金直接應用於熱泵系統。
    第一部份中,第一組儲氫合金是以LaNi5及LaNi4.7Al0.3為研究對象。由P-C-T實驗結果,LaNi5藉由鋁元素的置換,成功地組合一對材料,再生熱源在90℃即可滿足熱泵系統操作;第二組由旭陽公司編號#5及T1儲氫合金組成,此組的再生熱源需在90℃以上才能完成熱泵系統運作。由van’t Hoff關係圖,已計算出二組儲氫合金的標準生成熱,且經卡計量測儲氫合金的實際生成熱,標準生成熱與實驗值非常接近,證明儲氫合金具有很好的加熱及冷卻開發能力。同時由卡計熱傳性能的分析,理想的熱傳溫度變化曲線應為脈衝式的波形。然而受限儲氫合金本身的低熱傳導值,實際的熱傳溫度是漸進式的,對於應用於熱泵系統而言,儲氫管的熱傳結構有突破研究的空間。

    在論文的第二部份,固態儲氫式熱泵系統己完成設計及組裝,可以順利運轉。然而目前熱泵系統的冷卻能力,受限於儲氫合金吸放氫平衡壓及循環水溫度條件,必須藉由『沒有儲氫合金與氫氣反應』的反應槽背景溫度值,來證明熱泵系統的冷卻能力。


    The performance and properties of hydrogen storage materials for application in heat pump systems will be evaluated. The metal hydride heat pump using solar energy for hot water (TH=100~130℃) may cool the room temperature water (TM=30℃) to a lower temperature water (TL=~20℃). Two parts of experiment will be performed to study the hydrogen storage properties of LaNi5-xMx-based alloys. In the first part of experiment, the P-C-T curves and hydrogen absorption-desorption kinetics will be measured. The effects of the alloying element M and the second phase on the hydrogenation properties of the alloys will be examined. The reaction enthalpy of hydriding –dehydriding can be calculated from the Van’t Hoff plot. Based on the characteristics of P-C-T curves, the optimum material composition can be evaluated. In the second part of experiment, the calorimetry will be employed to directly measure the reaction enthalpy of hydriding –dehydriding. The performance of cooling of the heat pump system will be evaluated.

    目 錄 摘要 …………………………………………………………….. i 目錄 ……………………………………………………………… iii 第一部份:固態儲氫式熱泵系統之儲氫材料開發 摘要 2 第一章 簡介………………………………………………………… 3 1-1 儲氫材料特性……………………………………………… 3 1-2 研究背景…………………………………………………… 7 第二章 研究方法…………………………………………………… 12 2-1 試樣製備…………………………………………………… 12 2-2 P-C-T 實驗………………………………………………… 12 2-3 van’t Hoff 關係圖………………………………………… 15 2-4 卡計量測…………………………………………………… 15 第三章 結果與討論………………………………………………… 18 3-1 儲氫材料結構鑑定………………………………………… 18 3-2 儲氫合金P-C-T實驗……………………………………… 21 3-3 van’t Hoff 關係圖………………………………………… 31 3-4 卡計量測…………………………………………………… 35 第四章 結論………………………………………………………… 45 第五章 未來工作方向………………………………………………論……………………………………………………….. 46 參考文獻……………………………………………………………… 47 第二部份:固態儲氫式熱泵系統性能研究 摘要 ……………………………………………………………… 50 第一章 簡介………………………………………………………… 51 第二章 研究方法及進行步驟……………………………………… 53 2-1 熱泵系統設計……………………………………………… 53 2-2 熱泵系統材料選擇………………………………………… 53 2-3 熱泵系統反應槽設計……………………………………… 53 2-4 熱泵系統控制及量測設計………………………………… 58 第三章 結果與討論………………………………………………… 63 3-1 低壓側反應槽循環水溫度變化…………………………… 63 3-2 高壓側反應槽循環水溫度變化…………………………… 63 3-3 熱泵系統氫氣壓力變化…………………………………… 66 3-4 熱泵系統冷卻效果………………………………………… 66 第四章 結論………………………………………………………… 70 第五章 未來工作方向……………………………………………… 71 參考文獻……………………………………………………………… 72 附錄…………………………………………………………………… 73

    第一部份 參考資料
    1. G. Bronoel, J. C. Achard, and L. Schlapbach, Int. J. Hydrogen Energy, 1 (1976) 251.
    2. S. Wakao and Y. Y. Onemura, J. Less-Common Met., 104 (1984) 365.
    3. D. Shaltiel, I. Jacob, and D. Davidov, J. Less-Common Met., 53 (1977) 117.
    4. H. H. van Mal, Philips Res. Rep. Suppl. (1976) No.1.
    5. G. G. Libowitz and Z. Blank, 11th Intersociety Energy Conversion Engineering Conference, vol. 1 (AIChE, New York 1976) 673.
    6. D. M. Gruen, R. l. Mcbeth, M. Mendendelsohn, J. M. Nixon, F. Schreiner, and I. Sheft, ibid, p.681.
    7. 大角泰章, ”水素吸藏合金--物性及應用” 株式會社, 1993年10月30日初版.
    8. J. H. N. van Vucht, F. A. Kuijpers, and H. C. A. M. Burning, Philips Res. Rep., 25 (1970) 133.
    9. H. H. van Mal, K. H. J. Buschow, and A. R. Miedema, J Less-Common Met., 35 (1974) 65.
    10. M. H. Mendelsohn, D. M. Gruen, and A. E. Dwight, Nature, 269 (1977) 45.
    11. H. H. van Mal. and A. R. Miedema, Hydrides for Energy Storage, Proc. Int. Symp. , Geilo, Pergamon 1970, p.251.
    12. C. J. M. Northrup, Jr. and A. A. Heckes, J. Less-Common Met., 74 (1980) 419.
    13. J. H. Swisher, Hydrides Versus Competing Options for Storing
    Hydrogen in Energy System, CONF-800402-13, U. S. Department
    of Energy, 1980.
    14. H. Okamoto, Alloy Phase Diagram, H. Baker, and H. Okamoto (eds.) , ASM, 1992, vol. 3, p. 273.
    15. P. Dantzer and F. Meunier, Mater. Sci. Forum., 31 (1988) 1.
    16. M. R. Gopal and S. S. Murthy, Int. J. Hydrogen Energy, 20 (1995) 911.
    17. M. Nagel, Y. Komazaki, M. Uchida, and S. Suda, J. Less-Common Met., 104 (1984) 307.
    18. S. G. Lee, Y. K. Kim, and J. Y. Lee, Int. J. Hydrogen Energy, 20 (1995) 77.
    第二部份 參考資料
    1. Sheft, D. M. Gruen, and G. J. Lamich, J. Less-Common Met., 74 (1980) 401.
    2. M. Nagel, Y. Komazaki, M. Uchida, and S. Suda, J. Less-Common Met., 104 (1984) 307.
    3. M. Nagel, Y. Komazaki, Y. Matsubara, and S. Suda, J. Less-Common Met., 123 (1986) 47.
    4. M. Moroto, N. Hiro, K. Akashi, K. Nasako, T. Yonesaki, and M. Osumi, Solar Engineering ASME, p.103 (1991)
    5. S. G. Lee, Y. K. Kim, and J. Y. Lee, Int. J. Hydrogen Energy, 20 (1995) 77.
    6. T. Imoto, T. Yonesaki, S. Fujitani, I. Yonezu, N. Hiro, K. Nasako, and T. Saito, Int. J. Hydrogen Energy, 21 (1996) 451.
    7. A. Isselhorst and M. Groll, J. Alloys Comp., 231 (1995) 888.
    8. E. Willers and M. Groll, Int. J. Hydrogen Energy, 24 (1999) 269.
    9. S. Y. Liu, Master’s Thesis, National Tsing Hua University (1995).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE