簡易檢索 / 詳目顯示

研究生: 林威呈
論文名稱: 利用壓印技術於聚醯亞胺基板製造低通濾波器之研究
The Fabrication of Low Pass Filter on Polyimide Substrate by Imprinting Technology
指導教授: 連振炘
Lien, Chen-Hsin
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 51
中文關鍵詞: 聚醯亞胺壓印
外文關鍵詞: polyimide, imprint
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文應用壓印技術在軟性基板聚醯亞胺上實現低通濾波器,首先用模擬軟體ADS(Advanced design system)決定模具的圖樣,再將金屬濺鍍上模具,接著以壓印的方法將模具上的金屬圖樣黏附於聚醯亞胺上,並討論模具及聚醯亞胺的處理,與各種製程條件對壓印結果產生的影響。
    由實驗結果得知,在模具上預先蒸鍍F13TCS(脫膜劑)以及對聚醯亞胺浸泡NaOH溶液進行基底處理皆可增加壓印圖樣的完整度。本實驗中,可以利用傳統微影製程製作而成的模具,藉由壓印的方式實現低通濾波器。
    在低通濾波器的頻率響應方面,量測結果具有衰減高於截止頻率的訊號強度的特性,加上避免傳統被動元件大尺寸的困擾以及在軟性基板製作,提昇低通濾波器可攜性的可能性。


    In this thesis, we fabricate low pass filter on flexible substrate, polyimide, by imprint technology. First, we use advanced design system to decide length and width of pattern on Si mold, then sputter metal on mold and imprint metal on polyimide. We will discuss the factors that influence imprint results, including surface treatment, and parameters of the imprint process.
    As the result of this experiment, pre-coating F13TCS on mold and doing wet treatment to polyimide with strong NaOH solution can improve the imprint. At last, we imprint low pass filter on polyimide successfully by the mold that made with traditional lithography technology.
    As the results of measurement, the low pass filters attenuate the signal level when the frequency of signal is higher than the cutoff frequency. We make the portability of low pass filter more possibilities, because we avoid large size of traditional passive components and we make low pass filter on flexible substrate.

    第一章 序論……………………………………………………………1 第二章 奈米壓印的演進與微影技術…………………………………4 2.1 奈米壓印微影技術…………………………………………….4 2.2 步進閃光壓印微影技術……………………………………….6 2.3 微接觸轉印…………………………………………………….8 2.4 轉向壓印微影技術…………………………………………….9 第三章 聚醯亞胺與低通濾波器………………..…………….…….12 3.1 聚醯亞胺簡介………...……..………………………….…….12 3.2低通濾波器簡介……………........……………………………13 3.2.1 實現低通濾波器……………………...….…………....14 3.2.2 步階式阻抗變化低通濾波器設計………..………..…16 第四章 實驗方法…………..…………………………………………19 4.1 光罩圖樣……………..……………………………………….19 4.2 E-gun鍍銅製程步驟.……………………………………….20 4.2.1 模具製備………..……………………………………..20 4.2.2 塗佈脫膜劑……..…………...……………………...…21 4.2.3 壓印流程………..……………………………………..23 4.3 電鍍銅製程步驟………..………………………………….…24 第五章 實驗結果……………………………………………..………27 5.1步階式阻抗變化低通濾波器模擬………………………….…27 5.2 實驗操作變因探討………………………………….……......32 5.2.1 測試壓印溫度與壓力………………………….……...32 5.2.2測試金屬壓印與聚醯亞胺浸泡NaOH時間長短的影響.32 5.2.3 脫模劑對壓印結果的影響…….……………………...38 5.3 電鍍銅實驗的壓印結果……….……………………………..40 5.4 元件量測結果………….…………………………………..…41 5.5 實驗討論……….……………………………………………..43 第六章 結論………….…………………………….…………………48 參考文獻………………………………………………………………..50 圖表目錄 圖2-1 傳統奈米壓印技術製程………………………………….…...5 圖2-2 步進閃光壓印微影步驟示意圖………………………….…….7 圖2-3 微接觸轉印製程步驟示意圖…………………………………...9 圖2-4 轉向壓印步驟示意圖…………………………….…………….10 圖2-5 轉向壓印的三種壓印模式……………………….…………….11 圖3-1聚醯亞胺結構示意圖……………………………………......12 圖3-2理想低通濾波器之頻率響應示意圖………………..………….14 圖3.3低通濾波器之簡易LC電路示意圖……………………………14 圖3-4(a) 漣波低通濾波器頻率響應示意圖………………………..15 圖3-4(b) 最大平滑低通濾波器頻率響應示意圖……….…………..15 表3-1最大平滑低通濾波器模型參數…………………….…………..17 式3-1(a) 計算電感之 值....................................18 式3-1(b) 計算電容之 值…………………………….……………...18 圖4-1(a) 直線圖樣Layout示意圖……………….………….……..19 圖4-1(b) 四階低通濾波器Layout示意圖..…….………………….20 圖4-1(c) 五階低通濾波器Layout示意圖……..…………………..20 圖4-2 模具製備流程圖………………………….…………………….21 圖4-3 F13TCS分子與模具表面反應示意圖.…..……….…………..23

    [1] ITRS, International Technology Roadmap for semiconductors Conference(2005)
    [2] Günter Schmid, Hagen Klauk, Marcus Halik, Ute Zschieschang, Florian Eder and Christine Dehm, “Polymer Electronics”, mstnews S/03, pp. 19-20(2003)
    [3] L Jay Guo, J. Phys. D, Appl. Phys. 37 R123(2004)
    [4] L. Montelius, Microelectronic Eng. 61-62,441(2002)
    [5] The Properties of Polyimide Targets, LLE Review. Vol.92(2002)
    [6] Stephen Y. Chou, Peter R. Krauss, and Preston J. Renstrom, Appl. Phys. Lett.67 , 3114(1995)
    [7] Stephen Y. Chou, Peter R. Krauss, and Preston J. Renstrom, Science, 272, 85(1996)
    [8] Stephen Y. Chou, Peter R. Krauss, and Preston J. Renstrom, J. Vac.Sci.Technol. B 14, 4129(1996)
    [9] H. C. Scheer, H Schulz, T, Hoffman, and C. M. Sotomayor Torres, J. Vac. Sci. Technol. 16, 3917(1998)
    [10] M. Colburn, S. Johnson, M. Stewart, S. Damle, T. Bailey, B. Choi, M. Wedlake, T. Michaelson, S. V. Sreenivasan, J. Ekerdt, C. G. Willson, Proc. of SPIE 3676 379(1999)
    [11] Y. Xia, G. M. Whitesides, Angew. Chem. Int., 37, 500(1998)
    [12] X. D. Huang, L.-R. Bao, X. Cheng, L. J. Guo, S. W. Pang, and A. F. Yee, Reversal imprinting by transferring polymer from mold to substrate, Journal Vacuum Science Technology B, Vol.20(6), pp. 2872-2876(2002)
    [13] X. D. Huang, L. R. Bao, X. Cheng, L. J. Guo, S. W. Pang, and A. F. Yee, J. Vac. Sci. Technol. B 20, 2872(2002)
    [14] 金進興, 工業材料, 六月, 114(1996)
    [15] David M. Pozar, Microwave Engineering, 3rd Editon, John Wiley & Sons, Inc(2005)
    [16] Dieter K. Schroder, Semiconductor Material and Device Characterization, 2nd Edition, John Wiley & Sons, Inc(1998)
    [17] M. Beck, M. Graczyk, I. Maximov, E. L. Sarwe, T. G. I. Ling, M. Keil, L. Montelius, Microelectronic Engineering, 61-62, 441(2002)
    [18] T. Nishino, M. Meguro, K. Nakamae, M. Matsushita, and Y. Ueda, Langmuir 15, 4321(1999)
    [19] Jem-Kun Chen, Fu-Hsiang Ko, Kuen-Fong Hsieh, Cheng-Tung Chou, Feng-Chih Chang, J. Vac. Sci. Technol. B 22, 3233(2004)
    [20] T. R. Shen, Study of wet treatment of polyimide by sum-frequency vibrational spectroscopy, Appl. Phys. Vol.74, 22(1999)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE