研究生: |
林建竹 Lin, Chien-Chu |
---|---|
論文名稱: |
整合素和醣胺素對台灣眼鏡蛇毒金屬酶蛋白的酵素活性和專一性之影響 The effects of integrin and heparin binding on the enzymatic activity and specificity of Taiwan cobra SVMPs |
指導教授: |
吳文桂
Wu, Wen-Quey |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 生物資訊與結構生物研究所 Institute of Bioinformatics and Structural Biology |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 英文 |
論文頁數: | 56 |
中文關鍵詞: | 整合素 、醣胺素 、蛇毒金屬酶蛋白 、纖維蛋白原 |
外文關鍵詞: | integrin, heparin, SVMP, Fibrinogen |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
PIII類型蛇毒金屬酶蛋白擁有金屬水解酵素區域、去整合素相似區域、多半胱胺酸區域,且為主要在蛇毒毒液中的主要酵素,且被發現和傷患病人的凝血機制相關。最近我們實驗室找到兩個像似序列 (~60%)、3D結構的蛇毒金屬酶蛋白,分別為atragin和k-like,並且由之前實驗知道atragin會和整合素αvβ3結合進而去抑制NIH 3T3纖維母細胞移動,且擁有醣胺素結合能力,然而我們並不清楚atragin和整合素αvβ3、醣胺素之前的結合模式及atragin 和它們結合之後在蛇毒金屬酶蛋白酵素功能上所扮演的角色。
(一)因此我們利用表面電漿共振技術去分別測量atragin和整合素αvβ3還有atragin和醣胺素之間的親和力,實驗發現atragin和整合素αvβ3、醣胺素的解離常數分別大約為53nM、17nM,相較於k-like有較強的結合力,這個和利用醣胺素管柱分析的現象一致。由於,重組表現atragin多半胱胺酸區域蛋白和整合素αvβ3、醣胺素的親和力比整個蛋白比較分別弱約8倍和3倍,此實驗顯示除了atragin的多半胱胺酸區域,其他蛋白區域也可能參與在整合素、醣胺素結合模式。(二)利用RGD胜肽去和atragin競爭實驗,顯示atragin結合在整合素的RGD結合區位上。根據我們利用電腦模擬的結合模式發現不只多半胱胺酸區域結合在RGD結合區位上,還有金屬水解酵素區域也有可能參與atragin和整合素的結合模式,此和我們SPR所得到的結果一致。(三)在水解纖維蛋白原的實驗中,整合素αvβ3和atragin結合後會抑制atragin水解纖維蛋白原的活性,這可能顯示atragin干擾整合素和其配體結合且atragin 的c形結構可以藉由和整合素結合去調節atragin的活性。此外,atragin利用和醣胺素結合,使得atragin可以額外水解纖維蛋白原的β鍊,此現象表示與醣胺素結合可以改變atragin的酵素專一性並且可能影響和纖維蛋白原β鍊相關的生物活性,例如:新血管新生。
上述結果顯示蛇毒金屬酶蛋白的醣胺素結合能力具有生物意義,而且非RGD的蛋白亦有可能與整合素αvβ3結合。
P-III type snake venom metalloproteases(SVMPs) are major enzymes with metalloprotease/disintegrin/cysteine-rich(MDC) domains in viper venom and have been implicated to disrupt the haemostatic system for the envenomed victims of viper snakebite. Recently, our laboratory identified two novel SVMPs, atragin and k-like, with similar primary sequence (~60%) and 3D structure. Atragin binds to αvβ3 integrin, inhibits NIH3T3 cell migration and possesses heparin binding ability. However, the binding model of atragin/αvβ3 integrin and the role of heparin binding on SVMP enzymatic activity were still unclear.
(i) We determined the binding affinity between SVMPs/integrin and SVMPs/heparin by using SPR, respectively. We found that atragin bind to αvβ3 integrin and heparin stronger than k-like with apparent dissociation constants ~53nM and ~17nM, respectively. It is consistent with the observation that atragin binding to heparin affinity column stronger than k-like. In addition, the affinity of the recombinant Cys-rich domain of atragin binding to αvβ3 integrin and heparin were ~8 and ~3 times weaker than whole protein, indicating that other domains might also be involved in the binding process. (ii) The RGD peptide competed with atragin binding αvβ3 integrin, indicating that atragin bind to RGD binding site of integrin. According to the molecular docking model, not only Cys-rich domain binds to the RGD site of αvβ3 integrin but also M domain of atragin may be involved in atragin/integrin interaction in consistent with our SPR studies. (iii) In fibrinogen digestion assay, αvβ3 integrin inhibited the enzymatic activity of atragin by binding to□αvβ3 integrin. It suggested that atragin binding to αvβ3 integrin could interrupt natural ligands binding to αvβ3 integrin and the C-shape structure of atragin in binding integrin modulates the enzymatic activity. Beside, atragin can digest additional β chain of fibrinogen in the presence of heparin. This phenomenon indicated heparin binding could change the enzymatic specificity of atragin, therefore, may affect biological activity such as angiogenesis.
These results suggest that SVMPs binds to heparin with biological significance and non-RGD protein could be able to bind to integrin αvβ3.
Bazan-Socha, S., D. G. Kisiel, et al. (2004). "Structural requirements of MLD-containing disintegrins for functional interaction with alpha 4 beta 1 and alpha 9 beta1 integrins." Biochemistry 43(6): 1639-47.
Bishop, J. R., M. Schuksz, et al. (2007). "Heparan sulphate proteoglycans fine-tune mammalian physiology." Nature 446(7139): 1030-7.
Bjarnason, J. B. and J. W. Fox (1994). "Hemorrhagic metalloproteinases from snake venoms." Pharmacol Ther 62(3): 325-72.
Boudreau, N. J. and P. L. Jones (1999). "Extracellular matrix and integrin signalling: the shape of things to come." Biochem J 339 ( Pt 3): 481-8.
Bridges, L. C. and R. D. Bowditch (2005). "ADAM-Integrin Interactions: potential integrin regulated ectodomain shedding activity." Curr Pharm Des 11(7): 837-47.
Brooks, P. C., R. A. Clark, et al. (1994). "Requirement of vascular integrin alpha v beta 3 for angiogenesis." Science 264(5158): 569-71.
Bulow, H. E. and O. Hobert (2006). "The molecular diversity of glycosaminoglycans shapes animal development." Annu Rev Cell Dev Biol 22: 375-407.
Calvete, J. J., M. Jurgens, et al. (2000). "Disulphide-bond pattern and molecular modelling of the dimeric disintegrin EMF-10, a potent and selective integrin alpha5beta1 antagonist from Eristocophis macmahoni venom." Biochem J 345 Pt 3: 573-81.
Cardin, A. D. and H. J. Weintraub (1989). "Molecular modeling of protein-glycosaminoglycan interactions." Arteriosclerosis 9(1): 21-32.
Chen, H. S., H. Y. Tsai, et al. (2008). "P-III hemorrhagic metalloproteinases from Russell's viper venom: cloning, characterization, phylogenetic and functional site analyses." Biochimie 90(10): 1486-98.
Chen, T. S., F. Y. Chung, et al. (2005). "Structural difference between group I and group II cobra cardiotoxins: X-ray, NMR, and CD analysis of the effect of cis-proline conformation on three-fingered toxins." Biochemistry 44(20): 7414-26.
Cominetti, M. R., J. U. Ribeiro, et al. (2003). "BaG, a new dimeric metalloproteinase/disintegrin from the Bothrops alternatus snake venom that interacts with alpha5beta1 integrin." Arch Biochem Biophys 416(2): 171-9.
Cominetti, M. R., C. H. Terruggi, et al. (2004). "Alternagin-C, a disintegrin-like protein, induces vascular endothelial cell growth factor (VEGF) expression and endothelial cell proliferation in vitro." J Biol Chem 279(18): 18247-55.
Conway, E. M., D. Collen, et al. (2001). "Molecular mechanisms of blood vessel growth." Cardiovasc Res 49(3): 507-21.
Daltry, J. C., W. Wuster, et al. (1996). "Diet and snake venom evolution." Nature 379(6565): 537-40.
De Luca, M., L. C. Dunlop, et al. (1995). "A novel cobra venom metalloproteinase, mocarhagin, cleaves a 10-amino acid peptide from the mature N terminus of P-selectin glycoprotein ligand receptor, PSGL-1, and abolishes P-selectin binding." J Biol Chem 270(45): 26734-7.
Doege, K., M. Sasaki, et al. (1987). "Complete primary structure of the rat cartilage proteoglycan core protein deduced from cDNA clones." J Biol Chem 262(36): 17757-67.
Dvorak, H. F., V. S. Harvey, et al. (1987). "Fibrin containing gels induce angiogenesis. Implications for tumor stroma generation and wound healing." Lab Invest 57(6): 673-86.
Eble, J. A., P. Bruckner, et al. (2003). "Vipera lebetina venom contains two disintegrins inhibiting laminin-binding beta1 integrins." J Biol Chem 278(29): 26488-96.
Folkman, J. (2001). "A new family of mediators of tumor angiogenesis." Cancer Invest 19(7): 754-5.
Fox, J. W. and S. M. Serrano (2005). "Structural considerations of the snake venom metalloproteinases, key members of the M12 reprolysin family of metalloproteinases." Toxicon 45(8): 969-85.
Gao, R., R. Manjunatha Kini, et al. (2002). "A novel prothrombin activator from the venom of Micropechis ikaheka: isolation and characterization." Arch Biochem Biophys 408(1): 87-92.
Gould, R. J., M. A. Polokoff, et al. (1990). "Disintegrins: a family of integrin inhibitory proteins from viper venoms." Proc Soc Exp Biol Med 195(2): 168-71.
Gutierrez, J. M. and A. Rucavado (2000). "Snake venom metalloproteinases: their role in the pathogenesis of local tissue damage." Biochimie 82(9-10): 841-50.
Halberg, D. F., G. Proulx, et al. (1988). "A segment of the cartilage proteoglycan core protein has lectin-like activity." J Biol Chem 263(19): 9486-90.
Hamako, J., T. Matsui, et al. (1998). "Purification and characterization of kaouthiagin, a von Willebrand factor-binding and -cleaving metalloproteinase from Naha kaouthia cobra venom." Thromb Haemost 80(3): 499-505.
Hite, L. A., L. G. Jia, et al. (1994). "cDNA sequences for four snake venom metalloproteinases: structure, classification, and their relationship to mammalian reproductive proteins." Arch Biochem Biophys 308(1): 182-91.
Hu, D. D., C. F. Barbas, et al. (1996). "An allosteric Ca2+ binding site on the beta3-integrins that regulates the dissociation rate for RGD ligands." J Biol Chem 271(36): 21745-51.
Hynes, R. O. (2002). "Integrins: bidirectional, allosteric signaling machines." Cell 110(6): 673-87.
Igarashi, T., S. Araki, et al. (2007). "Crystal structures of catrocollastatin/VAP2B reveal a dynamic, modular architecture of ADAM/adamalysin/reprolysin family proteins." FEBS Lett 581(13): 2416-22.
Ito, M., J. Hamako, et al. (2001). "Complete amino acid sequence of kaouthiagin, a novel cobra venom metalloproteinase with two disintegrin-like sequences." Biochemistry 40(14): 4503-11.
Jagadeesha, D. K., R. Shashidhara murthy, et al. (2002). "A non-toxic anticoagulant metalloprotease: purification and characterization from Indian cobra (Naja naja naja) venom." Toxicon 40(6): 667-75.
Jia, L. G., X. M. Wang, et al. (2000). "Inhibition of platelet aggregation by the recombinant cysteine-rich domain of the hemorrhagic snake venom metalloproteinase, atrolysin A." Arch Biochem Biophys 373(1): 281-6.
Johnson, E. K. and C. L. Ownby (1993). "Isolation of a hemorrhagic toxin from the venom of Agkistrodon contortrix laticinctus (broad-banded copperhead) and pathogenesis of the hemorrhage induced by the toxin in mice." Int J Biochem 25(2): 267-78.
Kang, I. C., Y. D. Lee, et al. (1999). "A novel disintegrin salmosin inhibits tumor angiogenesis." Cancer Res 59(15): 3754-60.
Kim, M., C. V. Carman, et al. (2003). "Bidirectional transmembrane signaling by cytoplasmic domain separation in integrins." Science 301(5640): 1720-5.
Kirkpatrick, C. A. and S. B. Selleck (2007). "Heparan sulfate proteoglycans at a glance." J Cell Sci 120(Pt 11): 1829-32.
Li, S., J. Wang, et al. (2004). "Proteomic characterization of two snake venoms: Naja naja atra and Agkistrodon halys." Biochem J 384(Pt 1): 119-27.
Liu, W., S. A. Ahmad, et al. (2000). "Endothelial cell survival and apoptosis in the tumor vasculature." Apoptosis 5(4): 323-8.
Marcinkiewicz, C., S. Vijay-Kumar, et al. (1997). "Significance of RGD loop and C-terminal domain of echistatin for recognition of alphaIIb beta3 and alpha(v) beta3 integrins and expression of ligand-induced binding site." Blood 90(4): 1565-75.
Mariano-Oliveira, A., A. L. Coelho, et al. (2003). "Alternagin-C, a nonRGD-disintegrin, induces neutrophil migration via integrin signaling." Eur J Biochem 270(24): 4799-808.
Martinez, J., A. Ferber, et al. (2001). "Interaction of fibrin with VE-cadherin." Ann N Y Acad Sci 936: 386-405.
Masuda, S., H. Hayashi, et al. (1998). "Two vascular apoptosis-inducing proteins from snake venom are members of the metalloprotease/disintegrin family." Eur J Biochem 253(1): 36-41.
Masuda, S., H. Hayashi, et al. (2001). "Purification, cDNA cloning and characterization of the vascular apoptosis-inducing protein, HV1, from Trimeresurus flavoviridis." Eur J Biochem 268(11): 3339-45.
Masuda, S., T. Ohta, et al. (2000). "cDNA cloning and characterization of vascular apoptosis-inducing protein 1." Biochem Biophys Res Commun 278(1): 197-204.
Morris, V. L., E. E. Schmidt, et al. (1995). "Effects of the disintegrin eristostatin on individual steps of hematogenous metastasis." Exp Cell Res 219(2): 571-8.
Mosesson, M. W. (2005). "Fibrinogen and fibrin structure and functions." J Thromb Haemost 3(8): 1894-904.
O'Keefe, M. C., L. H. Caporale, et al. (1988). "A novel cleavage product of human complement component C3 with structural and functional properties of cobra venom factor." J Biol Chem 263(25): 12690-7.
Odrljin, T. M., C. W. Francis, et al. (1996). "Heparin-binding domain of fibrin mediates its binding to endothelial cells." Arterioscler Thromb Vasc Biol 16(12): 1544-51.
Odrljin, T. M., J. R. Shainoff, et al. (1996). "Thrombin cleavage enhances exposure of a heparin binding domain in the N-terminus of the fibrin beta chain." Blood 88(6): 2050-61.
Okuda, D. and T. Morita (2001). "Purification and characterization of a new RGD/KGD-containing dimeric disintegrin, piscivostatin, from the venom of Agkistrodon piscivorus piscivorus: the unique effect of piscivostatin on platelet aggregation." J Biochem 130(3): 407-15.
Paine, M. J., H. P. Desmond, et al. (1992). "Purification, cloning, and molecular characterization of a high molecular weight hemorrhagic metalloprotease, jararhagin, from Bothrops jararaca venom. Insights into the disintegrin gene family." J Biol Chem 267(32): 22869-76.
Pinto, A. F., R. M. Terra, et al. (2007). "Mapping von Willebrand factor A domain binding sites on a snake venom metalloproteinase cysteine-rich domain." Arch Biochem Biophys 457(1): 41-6.
Plow, E. F., T. A. Haas, et al. (2000). "Ligand binding to integrins." J Biol Chem 275(29): 21785-8.
Rahman, S., G. Flynn, et al. (2000). "Differential recognition of snake venom proteins expressing specific Arg-Gly-Asp (RGD) sequence motifs by wild-type and variant integrin alphaIIbbeta3: further evidence for distinct sites of RGD ligand recognition exhibiting negative allostery." Biochem J 345 Pt 3: 701-9.
Ramos, O. H. and H. S. Selistre-de-Araujo (2006). "Snake venom metalloproteases--structure and function of catalytic and disintegrin domains." Comp Biochem Physiol C Toxicol Pharmacol 142(3-4): 328-46.
Rodgers, K. D., J. D. San Antonio, et al. (2008). "Heparan sulfate proteoglycans: a GAGgle of skeletal-hematopoietic regulators." Dev Dyn 237(10): 2622-42.
Rodrigues, F. G., J. H. Petretski, et al. (2004). "The complement system is involved in acute inflammation but not in the hemorrhage produced by a Bothrops atrox snake venom low molecular mass proteinase." Mol Immunol 40(16): 1149-56.
Rucavado, A., E. Flores-Sanchez, et al. (1999). "Characterization of the local tissue damage induced by LHF-II, a metalloproteinase with weak hemorrhagic activity isolated from Lachesis muta muta snake venom." Toxicon 37(9): 1297-312.
Ruoslahti, E. (1989). "Proteoglycans in cell regulation." J Biol Chem 264(23): 13369-72.
Scarborough, R. M., J. W. Rose, et al. (1993). "Characterization of the integrin specificities of disintegrins isolated from American pit viper venoms." J Biol Chem 268(2): 1058-65.
Selistre-de-Araujo, H. S., E. L. de Souza, et al. (2000). "Expression, refolding, and activity of a recombinant nonhemorrhagic snake venom metalloprotease." Protein Expr Purif 19(1): 41-7.
Selistre de Araujo, H. S., D. H. de Souza, et al. (1997). "Analysis of a cDNA sequence encoding a novel member of the snake venom metalloproteinase, disintegrin-like, cysteine-rich (MDC) protein family from Agkistrodon contortrix laticinctus." Biochim Biophys Acta 1342(2): 109-15.
Serrano, S. M., L. G. Jia, et al. (2005). "Function of the cysteine-rich domain of the haemorrhagic metalloproteinase atrolysin A: targeting adhesion proteins collagen I and von Willebrand factor." Biochem J 391(Pt 1): 69-76.
Serrano, S. M., J. Kim, et al. (2006). "The cysteine-rich domain of snake venom metalloproteinases is a ligand for von Willebrand factor A domains: role in substrate targeting." J Biol Chem 281(52): 39746-56.
Serrano, S. M., D. Wang, et al. (2007). "Interaction of the cysteine-rich domain of snake venom metalloproteinases with the A1 domain of von Willebrand factor promotes site-specific proteolysis of von Willebrand factor and inhibition of von Willebrand factor-mediated platelet aggregation." FEBS J 274(14): 3611-21.
Shoibonov, B. B., A. V. Osipov, et al. (2005). "Oxiagin from the Naja oxiana cobra venom is the first reprolysin inhibiting the classical pathway of complement." Mol Immunol 42(10): 1141-53.
Smith, J. W., R. S. Piotrowicz, et al. (1994). "A mechanism for divalent cation regulation of beta 3-integrins." J Biol Chem 269(2): 960-7.
Souza, D. H., M. R. Iemma, et al. (2000). "The disintegrin-like domain of the snake venom metalloprotease alternagin inhibits alpha2beta1 integrin-mediated cell adhesion." Arch Biochem Biophys 384(2): 341-50.
Stromblad, S. and D. A. Cheresh (1996). "Integrins, angiogenesis and vascular cell survival." Chem Biol 3(11): 881-5.
Swenson, S., F. Costa, et al. (2004). "Intravenous liposomal delivery of the snake venom disintegrin contortrostatin limits breast cancer progression." Mol Cancer Ther 3(4): 499-511.
Takagi, J., H. P. Erickson, et al. (2001). "C-terminal opening mimics 'inside-out' activation of integrin alpha5beta1." Nat Struct Biol 8(5): 412-6.
Takeda, S., T. Igarashi, et al. (2006). "Crystal structures of VAP1 reveal ADAMs' MDC domain architecture and its unique C-shaped scaffold." EMBO J 25(11): 2388-96.
Tonnesen, M. G., X. Feng, et al. (2000). "Angiogenesis in wound healing." J Investig Dermatol Symp Proc 5(1): 40-6.
Toombs, C. F. (2001). "Alfimeprase: pharmacology of a novel fibrinolytic metalloproteinase for thrombolysis." Haemostasis 31(3-6): 141-7.
Trikha, M., Y. A. De Clerck, et al. (1994). "Contortrostatin, a snake venom disintegrin, inhibits beta 1 integrin-mediated human metastatic melanoma cell adhesion and blocks experimental metastasis." Cancer Res 54(18): 4993-8.
Trummal, K., K. Tonismagi, et al. (2005). "A novel metalloprotease from Vipera lebetina venom induces human endothelial cell apoptosis." Toxicon 46(1): 46-61.
Vallar, L., C. Melchior, et al. (1999). "Divalent cations differentially regulate integrin alphaIIb cytoplasmic tail binding to beta3 and to calcium- and integrin-binding protein." J Biol Chem 274(24): 17257-66.
Varner, J. A. and D. A. Cheresh (1996). "Integrins and cancer." Curr Opin Cell Biol 8(5): 724-30.
Vinogradova, O., A. Velyvis, et al. (2002). "A structural mechanism of integrin alpha(IIb)beta(3) "inside-out" activation as regulated by its cytoplasmic face." Cell 110(5): 587-97.
Wagstaff, S. C., L. Sanz, et al. (2009). "Combined snake venomics and venom gland transcriptomic analysis of the ocellated carpet viper, Echis ocellatus." J Proteomics 71(6): 609-23.
Wang, S. H., X. C. Shen, et al. (2003). "cDNA cloning and characterization of Agkistin, a new metalloproteinase from Agkistrodon halys." Biochem Biophys Res Commun 301(2): 298-303.
Ware, J. A. and M. Simons (1997). "Angiogenesis in ischemic heart disease." Nat Med 3(2): 158-64.
Werb, Z. (1997). "ECM and cell surface proteolysis: regulating cellular ecology." Cell 91(4): 439-42.
Wierzbicka-Patynowski, I., S. Niewiarowski, et al. (1999). "Structural requirements of echistatin for the recognition of alpha(v)beta(3) and alpha(5)beta(1) integrins." J Biol Chem 274(53): 37809-14.
Wu, P. L., S. C. Lee, et al. (2006). "Non-cytotoxic cobra cardiotoxin A5 binds to alpha(v)beta3 integrin and inhibits bone resorption. Identification of cardiotoxins as non-RGD integrin-binding proteins of the Ly-6 family." J Biol Chem 281(12): 7937-45.
Wu, W. B., S. C. Chang, et al. (2001). "Purification, molecular cloning and mechanism of action of graminelysin I, a snake-venom-derived metalloproteinase that induces apoptosis of human endothelial cells." Biochem J 357(Pt 3): 719-28.
Xiong, J. P., T. Stehle, et al. (2001). "Crystal structure of the extracellular segment of integrin alpha Vbeta3." Science 294(5541): 339-45.
Yahalom, D., A. Wittelsberger, et al. (2002). "Identification of the principal binding site for RGD-containing ligands in the alpha(V)beta(3) integrin: a photoaffinity cross-linking study." Biochemistry 41(26): 8321-31.
Yakovlev, S., S. Gorlatov, et al. (2003). "Interaction of fibrin(ogen) with heparin: further characterization and localization of the heparin-binding site." Biochemistry 42(25): 7709-16.
You, W. K., H. J. Seo, et al. (2003). "A novel metalloprotease from Gloydius halys venom induces endothelial cell apoptosis through its protease and disintegrin-like domains." J Biochem 134(5): 739-49.
Zhou, Q., J. B. Smith, et al. (1995). "Molecular cloning and expression of catrocollastatin, a snake-venom protein from Crotalus atrox (western diamondback rattlesnake) which inhibits platelet adhesion to collagen." Biochem J 307 ( Pt 2): 411-7.