研究生: |
黃謙煜 Huang, Chien-Yu |
---|---|
論文名稱: |
脈衝式電鍍銥觸媒於奈米碳管載體應用於質子交換膜電解器之陽極端 Fabricated Iridium Catalyst on Carbon nano Tubes Carriers as Anode for PEMWE by Pulse Electrodeposition |
指導教授: |
葉宗洸
Yeh, Tsung-Kuang |
口試委員: |
王本誠
Wang, Pen-Cheng 王丞浩 Wang, Chen-Hao 陳長盈 Chen, Charn-Ying |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2023 |
畢業學年度: | 111 |
語文別: | 中文 |
論文頁數: | 75 |
中文關鍵詞: | 質子交換膜電解器 、奈米碳管 、觸媒載體 、脈衝式沉積法 |
外文關鍵詞: | Proton exchange membrane electrolyzer, Carbon nano tubes, Catalyst support, pulse electrodeposition |
相關次數: | 點閱:75 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗利用脈衝式沉積法製備銥觸媒於多壁奈米碳管 (Muti-walls carbon nanotubes, MWCNT) 載體上,並應用於質子交換膜水電解器 (Proton exchange membrane water electrolyzer, PEMWE) 的陽極端。但由於 PEMWE 陽極端於高過電位 (>1.48 V) 下進行,因此大多數觸媒載體並不適用,使增加了陽極端貴重金屬的負載量。而奈米碳管擁有高機械強度、抗化學性以及高導電度,因此廣泛被作為觸媒載體,相較於傳統碳黑載體,有較佳的抗腐蝕能力,因此將其應用於 PEMWE 的陽極端。
掃描式電子顯微鏡 (Scanning electron microscopy, SEM)、循環伏安法 (Cyclic voltammetry, CV)、線性掃描伏安法 (Linear sweep voltammetry, LSV) 和感應耦合電漿質譜分析儀 (Inductively coupled plasma-mass spectrometer, ICP-MS) 以及 X-光繞射儀 (X-ray Diffractometer, XRD) 用以測試觸媒表面形貌、活性和負載量以及商用觸媒的晶體結構,最後經由 PEMWE 測試產氫效率以及長效測試。在 PEMWE 測試中,透過脈衝式沉積銥觸媒於奈米碳管上,水電解效率於 1 A/cm2 有 1.625 V,且觸媒負載量只有 0.167 mg/cm2。
另外,本實驗也同時探討了商用氧化銥 (Iridium oxide) 應用於 PEMWE 陽極端的電解效率,並和自製觸媒做比較。經過參數優化後,結果顯示電解效率於 1 A/cm2 僅 1.73 V。最後,耐久性測試中發現利用脈衝式電鍍於奈米碳管載體 (CNT@Ir) 相較於商用觸媒 (IrO2) 擁有穩定的降解效率。
This experiment utilizes the pulse electrodeposition method to prepare iridium catalyst on multi-wall carbon nanotubes (MWCNT) as a support, which is then applied to the anode side of a proton exchange membrane water electrolyzer (PEMWE). However, due to the high operating potential (>1.48 V) at the anode side of PEMWE, most catalyst supports are not suitable, resulting in an increased loading of precious metals at the anode side. On the other hand, carbon nanotubes have high mechanical strength, chemical resistance, and conductivity, making them widely used as catalyst supports. Compared to traditional carbon black supports, they exhibit superior corrosion resistance, thus making them suitable for application at the anode side of PEMWE.
The surface morphology, activity, loading, and the crystal structure of commercial catalysts were characterized by SEM, CV, LSV, ICP-MS, and X-ray diffractometer (XRD). Finally, the catalyst was tested through PEMWE to evaluate its hydrogen production efficiency and durability. In PEMWE testing, the iridium catalyst was pulse-deposited on carbon nanotubes, resulting in electrolysis efficiency of 1.625 V at 1 A/cm2, with a catalyst loading of only 0.167 mg/cm2.
Additionally, the electrolysis efficiency of commercial iridium oxide (IrO2) applied to the anode side of PEMWE was also investigated and compared with a homemade catalyst. After parameter optimization, the results showed that the electrolysis efficiency at 1 A/cm2 was only 1.73 V. In the durability test, it was found that the catalyst prepared using pulse electrodeposition on a carbon nanotube support (CNT@Ir) exhibited a more stable degradation efficiency compared to the commercial catalyst.
[1] Y. Shao, G. Yin, Y. Gao, and P. Shi, Durability Study of Pt∕C and Pt∕CNTs Catalysts under Simulated PEM Fuel Cell Conditions, Journal of the Electrochemical Society, vol. 153, no. 6, 2006.
[2] 國家發展委員會。「臺灣2050淨零排放路徑及策略總說明」。
[3] S. Shiva Kumar and V. Himabindu, Hydrogen production by PEM water electrolysis – A review, Materials Science for Energy Technologies, vol. 2, no. 3, pp. 442-454, 2019.
[4] T. Wang, X. Cao, and L. Jiao, PEM water electrolysis for hydrogen production: fundamentals, advances, and prospects, Carbon Neutrality, vol. 1, no. 1, 2022.
[5] N. Du, C. Roy, R. Peach, M. Turnbull, S. Thiele, and C. Bock, Anion-Exchange Membrane Water Electrolyzers, Chem Rev, vol. 122, no. 13, pp. 11830-11895, 2022.
[6] H. Liu, S. Grot, and B. E. Logan, Electrochemically assisted microbial production of hydrogen from acetate, Environmental Science & Technology, vol. 39, no. 11, pp. 4317-4320, 2005.
[7] H. Liu, H. B. Tao, and B. Liu, Kinetic Insights of Proton Exchange Membrane Water Electrolyzer Obtained by Operando Characterization Methods, J Phys Chem Lett, vol. 13, no. 28, pp. 6520-6531, 2022.
[8] M. Carmo, D. L. Fritz, J. Mergel, and D. Stolten, A comprehensive review on PEM water electrolysis, International Journal of Hydrogen Energy, vol. 38, no. 12, pp. 4901-4934, 2013.
[9] S. A. Grigoriev, P. Millet, S. A. Volobuev, and V. N. Fateev, Optimization of porous current collectors for PEM water electrolysers, International Journal of Hydrogen Energy, vol. 34, no. 11, pp. 4968-4973, 2009.
[10] W. Xu and K. Scott, The effects of ionomer content on PEM water electrolyser membrane electrode assembly performance, International Journal of Hydrogen Energy, vol. 35, no. 21, pp. 12029-12037, 2010.
[11] Y.-F. Lin, C.-Y. Yen, C.-C. M. Ma, S.-H. Liao, C.-H. Lee, Y.-H. Hsiao, and H.-P. Lin, High proton-conducting Nafion®/–SO3H functionalized mesoporous silica composite membranes, Journal of Power Sources, vol. 171, no. 2, pp. 388-395, 2007.
[12] H. Teuku, I. Alshami, J. Goh, M. S. Masdar, and K. S. Loh, Review on bipolar plates for low‐temperature polymer electrolyte membrane water electrolyzer, International Journal of Energy Research, vol. 45, no. 15, pp. 20583-20600, 2021.
[13] A. Awasthi, K. Scott, and S. Basu, Dynamic modeling and simulation of a proton exchange membrane electrolyzer for hydrogen production, International Journal of Hydrogen Energy, vol. 36, no. 22, pp. 14779-14786, 2011.
[14] F. Marangio, M. Santarelli, and M. Cali, Theoretical model and experimental analysis of a high pressure PEM water electrolyser for hydrogen production, International Journal of Hydrogen Energy, vol. 34, no. 3, pp. 1143-1158, 2009.
[15] N. T. Suen, S. F. Hung, Q. Quan, N. Zhang, Y. J. Xu, and H. M. Chen, Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives, Chem Soc Rev, vol. 46, no. 2, pp. 337-365, 2017.
[16] I. C. Man, H. Y. Su, F. Calle‐Vallejo, H. A. Hansen, J. I. Martínez, N. G. Inoglu, J. Kitchin, T. F. Jaramillo, J. K. Nørskov, and J. Rossmeisl, Universality in Oxygen Evolution Electrocatalysis on Oxide Surfaces, ChemCatChem, vol. 3, no. 7, pp. 1159-1165, 2011.
[17] S. Trasatti, Electrocatalysis in the anodic evolution of oxygen and chlorine, Electrochimica Acta, vol. 29, no. 11, pp. 1503-1512, 1984.
[18] T. Reier, M. Oezaslan, and P. Strasser, Electrocatalytic Oxygen Evolution Reaction (OER) on Ru, Ir, and Pt Catalysts: A Comparative Study of Nanoparticles and Bulk Materials, ACS Catalysis, vol. 2, no. 8, pp. 1765-1772, 2012.
[19] A. R. Zeradjanin, J.-P. Grote, G. Polymeros, and K. J. J. Mayrhofer, A Critical Review on Hydrogen Evolution Electrocatalysis: Re-exploring the Volcano-relationship, Electroanalysis, vol. 28, no. 10, pp. 2256-2269, 2016.
[20] M. Tominaga, Y. Yatsugi, and N. Watanabe, Oxidative corrosion potential vs. pH diagram for single-walled carbon nanotubes, RSC Advances, vol. 4, no. 52, 2014.
[21] T. Fujigaya, Y. Shi, J. Yang, H. Li, K. Ito, and N. Nakashima, A highly efficient and durable carbon nanotube-based anode electrocatalyst for water electrolyzers, Journal of Materials Chemistry A, vol. 5, no. 21, pp. 10584-10590, 2017.
[22] H. Kim, J. Kim, J. Kim, G. H. Han, W. Guo, S. Hong, H. S. Park, H. W. Jang, S. Y. Kim, and S. H. Ahn, Dendritic gold-supported iridium/iridium oxide ultra-low loading electrodes for high-performance proton exchange membrane water electrolyzer, Applied Catalysis B: Environmental, vol. 283, p 119596, 2021.
[23] 張亘佑。「利用恆電位沉積法製備高活性鉑觸媒應用於 磷酸燃料電池電極之製程優化」。碩士論文, 國立清華大學工程與系統科學系, 2021。
[24] H. Jang and J. Lee, Iridium oxide fabrication and application: A review, Journal of Energy Chemistry, vol. 46, pp. 152-172, 2020.
[25] M. S. Chandrasekar and M. Pushpavanam, Pulse and pulse reverse plating—Conceptual, advantages and applications, Electrochimica Acta, vol. 53, no. 8, pp. 3313-3322, 2008.
[26] E. Vidal, J. Buxadera-Palomero, C. Pierre, J. M. Manero, M.-P. Ginebra, S. Cazalbou, C. Combes, E. Rupérez, and D. Rodríguez, Single-step pulsed electrodeposition of calcium phosphate coatings on titanium for drug delivery, Surface and Coatings Technology, vol. 358, pp. 266-275, 2019.
[27] H. Kim, N. P. Subramanian, and B. N. Popov, Preparation of PEM fuel cell electrodes using pulse electrodeposition, Journal of Power Sources, vol. 138, no. 1-2, pp. 14-24, 2004.
[28] S. M. Ayyadurai, Y.-S. Choi, P. Ganesan, S. P. Kumaraguru, and B. N. Popov, Novel PEMFC Cathodes Prepared by Pulse Deposition, Journal of the Electrochemical Society, vol. 154, no. 10, 2007.
[29] 吳維陞。「電沈積高活性鉑觸媒於奈米碳管載體應用於質子交換膜燃料電池電極之製程優化」。碩士, 國立清華大學工程與系統科學系, 2020。
[30] 莊宸綱。「利用脈衝式電鍍法製備高燃料氧化效能及抗一氧化碳毒化之新穎奈米結構鉑觸媒」。碩士論文, 國立清華大學工程與系統科學系, 2016。
[31] W. R. H. Peter T. Kissinger, cyclic voltammetry, Chemical Education, vol. 60, 1983.
[32] F. J. Nores-Pondal, I. M. J. Vilella, H. Troiani, M. Granada, S. R. de Miguel, O. A. Scelza, and H. R. Corti, Catalytic activity vs. size correlation in platinum catalysts of PEM fuel cells prepared on carbon black by different methods, International Journal of Hydrogen Energy, vol. 34, no. 19, pp. 8193-8203, 2009.
[33] K. D. Vernon-Parry, Scanning Electron Microscopy: an introduction, Centre for Electronic Materials, vol. 13, no. 4, pp. 40-44, 2000.
[34] V. Pfeifer, T. E. Jones, J. J. Velasco Vélez, C. Massué, R. Arrigo, D. Teschner, F. Girgsdies, M. Scherzer, M. T. Greiner, and J. Allan, The electronic structure of iridium and its oxides, Surface and Interface Analysis, vol. 48, no. 5, pp. 261-273, 2016.
[35] D. DeBonis, M. Mayer, A. Omosebi, and R. S. Besser, Analysis of mechanism of Nafion ® conductivity change due to hot pressing treatment, Renewable Energy, vol. 89, pp. 200-206, 2016.
[36] 黃仁暉。「利用恆電位沉積法製備花狀鉑鎳合金觸媒應用於質子交換膜燃料電池之陰極探討」。碩士論文, 國立清華大學工程與系統科學系, 2020。
[37] E. Kuhnert, V. Hacker, M. Bodner, and P. Subramanian, A Review of Accelerated Stress Tests for Enhancing MEA Durability in PEM Water Electrolysis Cells, International Journal of Energy Research, vol. 2023, pp. 1-23, 2023.
[38] C. V. Pham, D. Escalera‐López, K. Mayrhofer, S. Cherevko, and S. Thiele, Essentials of High Performance Water Electrolyzers – From Catalyst Layer Materials to Electrode Engineering, Advanced Energy Materials, vol. 11, no. 44, 2021.
[39] 江政鉉。「利用電化學沉積法直接於微孔層上製備商用尺寸質子交換膜燃料電池之奈米鉑觸媒」。碩士論文, 國立清華大學工程與系統科學系, 2019。
[40] E. N. El Sawy and V. I. Birss, Nano-porous iridium and iridium oxide thin films formed by high efficiency electrodeposition, Journal of Materials Chemistry, vol. 19, no. 43, 2009.
[41] S. Le Vot, L. Roué, and D. Bélanger, Electrodeposition of iridium onto glassy carbon and platinum electrodes, Electrochimica Acta, vol. 59, pp. 49-56, 2012.
[42] T. S. Mayadevi, B.-H. Goo, S. Y. Paek, O. Choi, Y. Kim, O. J. Kwon, S. Y. Lee, H.-J. Kim, and T.-H. Kim, Nafion Composite Membranes Impregnated with Polydopamine and Poly(Sulfonated Dopamine) for High-Performance Proton Exchange Membranes, ACS Omega, vol. 7, no. 15, pp. 12956-12970, 2022.
[43] A. Therdthianwong, P. Manomayidthikarn, and S. Therdthianwong, Investigation of membrane electrode assembly (MEA) hot-pressing parameters for proton exchange membrane fuel cell, Energy, vol. 32, no. 12, pp. 2401-2411, 2007.
[44] Y. Zhang, M. Cao, H. Lv, J. Wei, Y. Gu, D. Liu, W. Zhang, M. P. Ryan, and X. Wu, Electrodeposited nanometer-size IrO2/Ti electrodes with 0.3 mg IrO2 cm−2 for sludge dewatering electrolysers, Electrochimica Acta, vol. 265, pp. 507-513, 2018.
[45] M. Bernt, A. Siebel, and H. A. Gasteiger, Analysis of voltage losses in PEM water electrolyzers with low platinum group metal loadings, Journal of the Electrochemical Society, vol. 165, no. 5, pp. F305-F314, 2018.
[46] S. Zhao, A. Stocks, B. Rasimick, K. More, and H. Xu, Highly active, durable dispersed iridium nanocatalysts for PEM water electrolyzers, Journal of the Electrochemical Society, vol. 165, no. 2, p F82, 2018.
[47] S. Siracusano, V. Baglio, N. Van Dijk, L. Merlo, and A. S. Aricò, Enhanced performance and durability of low catalyst loading PEM water electrolyser based on a short-side chain perfluorosulfonic ionomer, Applied energy, vol. 192, pp. 477-489, 2017.