研究生: |
黃致遠 |
---|---|
論文名稱: |
以甲醯胺合成層狀鈦酸鹽之研究 Study of Layered Titanate Synthesized by Formamide |
指導教授: | 汪上曉 |
口試委員: |
呂世源
段興宇 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 中文 |
論文頁數: | 41 |
中文關鍵詞: | 甲醯胺 、層狀鈦酸鹽 、亞甲基藍吸附 |
外文關鍵詞: | Formamide, Layer Titanate, Methylene Blue adsorbtion |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
自1970年代起,TiO2在光催化性質方面的研究開始興起。由於TiO2對環境無害,目前已廣泛運用於光降解、分解水及染料敏化太陽能電池等光伏應用。將TiO2或其前驅物在鹼性環境下反應則可得到一層狀結構的鈦酸鹽類。其結構為帶負電的TiO6層與帶正電之陽離子層組成。這種層狀鈦酸鹽在重金屬離子捕捉、有機汙染物吸附及光降解等方面皆有應用價值。目前已有的層狀鈦酸鹽的合成方法是將TiO2和鹼金屬或強鹼溶液反應,或是將含鈦之前驅物在鹼性溶液中反應得到。
在本論文中提出以和文獻中不同的方法合成層狀鈦酸鹽,使用溶液為甲醯胺,而合成得到之層狀鈦酸鹽是以NH4+作為夾層陽離子。經由X-ray繞射鑑定,可確認以這種方法合成的層狀鈦酸鹽是和JCPDS資料庫中已建檔之層狀鈦酸鹽H2Ti2O5不同,且由傅立葉紅外光譜儀(FT-IR)鑑定得知產物中的確有NH4+存在。最後由熱重分析(TGA)結果計算產物分子式為(NH4)2Ti7O15。產物比表面積由BET法計算為334 m2/g,在亞甲基藍(MB)吸附實驗中可達到213 mg/g之吸附量。
1. Choi, W. Pure and modified TiO2 photocatalysts and their environmental applications. Catalysis Surveys from Asia 10, 16-28 (2006).
2. Carp, O., Huisman, C.L. & Reller, A. Photoinduced reactivity of titanium dioxide. Progress in Solid State Chemistry 32, 33-177 (2004).
3. Sivula, K., Le Formal, F. & Graetzel, M. WO3-Fe2O3 Photoanodes for Water Splitting: A Host Scaffold, Guest Absorber Approach. Chemistry of Materials 21, 2862-2867 (2009).
4. Mills, A. & LeHunte, S. An overview of semiconductor photocatalysis. Journal of Photochemistry and Photobiology a-Chemistry 108, 1-35 (1997).
5. Bahnemann, D.W., Kormann, C. & Hoffmann, M.R. PREPARATION AND CHARACTERIZATION OF QUANTUM SIZE ZINC-OXIDE - A DETAILED SPECTROSCOPIC STUDY. Journal of Physical Chemistry 91, 3789-3798 (1987).
6. Ni, M., Leung, M.K.H., Leung, D.Y.C. & Sumathy, K. A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renewable & Sustainable Energy Reviews 11, 401-425 (2007).
7. Gratzel, M. Solar energy conversion by dye-sensitized photovoltaic cells. Inorganic Chemistry 44, 6841-6851 (2005).
8. Fujishima, A., Zhang, X. & Tryk, D.A. TiO2 photocatalysis and related surface phenomena. Surface Science Reports 63, 515-582 (2008).
9. Carneiro, J.O. et al. Iron-doped photocatalytic TiO2 sputtered coatings on plastics for self-cleaning applications. Materials Science and Engineering B-Solid State Materials for Advanced Technology 138, 144-150 (2007).
10. Mitoraj, D. et al. Visible light inactivation of bacteria and fungi by modified titanium dioxide. Photochemical & Photobiological Sciences 6, 642-648 (2007).
11. Sakai, N., Ebina, Y., Takada, K. & Sasaki, T. Electronic band structure of titania semiconductor nanosheets revealed by electrochemical and photoelectrochemical studies. Journal of the American Chemical Society 126, 5851-5858 (2004).
12. Ma, R.Z., Bando, Y. & Sasaki, T. Directly rolling nanosheets into nanotubes. Journal of Physical Chemistry B 108, 2115-2119 (2004).
13. Zhang, S., Chen, Q. & Peng, L.M. Structure and formation of H2Ti3O7 nanotubes in an alkali environment. Physical Review B 71 (2005).
14. Sasaki, T. & Watanabe, M. Osmotic swelling to exfoliation. Exceptionally high degrees of hydration of a layered titanate. Journal of the American Chemical Society 120, 4682-4689 (1998).
15. Li, N., Zhang, L., Chen, Y., Tian, Y. & Wang, H. Adsorption behavior of Cu(II) onto titanate nanofibers prepared by alkali treatment. Journal of Hazardous Materials 189, 265-272 (2011).
16. Wu, H.B., Lou, X.W. & Hng, H.H. Synthesis of Uniform Layered Protonated Titanate Hierarchical Spheres and Their Transformation to Anatase TiO2 for Lithium-Ion Batteries. Chemistry-a European Journal 18, 2094-2099 (2012).
17. Chen, D., Huang, F., Cao, L., Cheng, Y.-B. & Caruso, R.A. Spiky Mesoporous Anatase Titania Beads: A Metastable Ammonium Titanate-Mediated Synthesis. Chemistry-a European Journal 18, 13762-13769 (2012).
18. Xiong, L. et al. Adsorption behavior of methylene blue onto titanate nanotubes. Chemical Engineering Journal 156, 313-320 (2010).
19. Jitputti, J. et al. Low temperature hydrothermal synthesis of monodispersed flower-like titanate nanosheets. Catalysis Communications 10, 378-382 (2009).
20. Song, Z.Q., Xu, H.Y., Li, K.W., Wang, H. & Yan, H. Hydrothermal synthesis and photocatalytic properties of titanium acid H2Ti2O5 center dot-H2O nanosheets. Journal of Molecular Catalysis a-Chemical 239, 87-91 (2005).
21. Landmann, M., Rauls, E. & Schmidt, W.G. The electronic structure and optical response of rutile, anatase and brookite TiO2. Journal of Physics-Condensed Matter 24 (2012).
22. Zhang, Q.H., Gao, L. & Guo, J.K. Effects of calcination on the photocatalytic properties of nanosized TiO2 powders prepared by TiCl4 hydrolysis. Applied Catalysis B-Environmental 26, 207-215 (2000).
23. Sclafani, A., Palmisano, L. & Schiavello, M. INFLUENCE OF THE PREPARATION METHODS OF TIO2 ON THE PHOTOCATALYTIC DEGRADATION OF PHENOL IN AQUEOUS DISPERSION. Journal of Physical Chemistry 94, 829-832 (1990).
24. Wunderlich, W. et al. Electronic properties of nano-porous TiO2- and ZnO-thin films-comparison of simulations and experiments. Journal of Ceramic Processing Research 5, 343-354 (2004).
25. Selloni, A. Crystal growth - Anatase shows its reactive side. Nature Materials 7, 613-615 (2008).
26. Thompson, T.L. & Yates, J.T. Surface science studies of the photoactivation of TiO2-new photochemical processes. Chemical Reviews 106, 4428-4453 (2006).
27. Gupta, S. & Tripathi, M. A review of TiO2 nanoparticles. Chinese Science Bulletin 56, 1639-1657 (2011).
28. Peng, X.S. & Chen, A.C. Aligned TiO2 nanorod arrays synthesized by oxidizing titanium with acetone. Journal of Materials Chemistry 14, 2542-2548 (2004).
29. Varghese, O.K. et al. Extreme changes in the electrical resistance of titania nanotubes with hydrogen exposure. Advanced Materials 15, 624-627 (2003).
30. Pradhan, S.K., Reucroft, P.J., Yang, F.Q. & Dozier, A. Growth of TiO2 nanorods by metalorganic chemical vapor deposition. Journal of Crystal Growth 256, 83-88 (2003).
31. Wu, J.J. & Yu, C.C. Aligned TiO2 nanorods and nanowalls. Journal of Physical Chemistry B 108, 3377-3379 (2004).
32. Wu, J.M., Shih, H.C. & Wu, W.T. Electron field emission from single crystalline TiO2 nanowires prepared by thermal evaporation. Chemical Physics Letters 413, 490-494 (2005).
33. Wu, J.M., Shih, H.C., Wu, W.T., Tseng, Y.K. & Chen, I.C. Thermal evaporation growth and the luminescence property of TiO2 nanowires. Journal of Crystal Growth 281, 384-390 (2005).
34. Bischoff, B.L. & Anderson, M.A. PEPTIZATION PROCESS IN THE SOL-GEL PREPARATION OF POROUS ANATASE (TIO2). Chemistry of Materials 7, 1772-1778 (1995).
35. Kao, L.-H., Hsu, T.-C. & Lu, H.-Y. Sol-gel synthesis and morphological control of nanocrystalline TiO2 via urea treatment. Journal of Colloid and Interface Science 316, 160-167 (2007).
36. Yang, J., Mei, S. & Ferreira, J.M.F. Hydrothermal synthesis of TiO2 nanopowders from tetraalkylammonium hydroxide peptized sols. Materials Science & Engineering C-Biomimetic and Supramolecular Systems 15, 183-185 (2001).
37. Kim, K.D., Kim, S.H. & Kim, H.T. Applying the Taguchi method to the optimization for the synthesis of TiO2 nanoparticles by hydrolysis of TEOT in micelles. Colloids and Surfaces a-Physicochemical and Engineering Aspects 254, 99-105 (2005).
38. Li, G.L. & Wang, G.H. Synthesis of nanometer-sized TiO2 particles by a microemulsion method. Nanostructured Materials 11, 663-668 (1999).
39. Livage, J., Henry, M. & Sanchez, C. SOL-GEL CHEMISTRY OF TRANSITION-METAL OXIDES. Progress in Solid State Chemistry 18, 259-341 (1988).
40. Hubertpfalzgraf, L.G. ALKOXIDES AS MOLECULAR PRECURSORS FOR OXIDE-BASED INORGANIC MATERIALS - OPPORTUNITIES FOR NEW MATERIALS. New Journal of Chemistry 11, 663-675 (1987).
41. Sanchez, C., Livage, J., Henry, M. & Babonneau, F. CHEMICAL MODIFICATION OF ALKOXIDE PRECURSORS. Journal of Non-Crystalline Solids 100, 65-76 (1988).
42. Takezawa, Y. & Imai, H. Bottom-up synthesis of titanate nanosheets with hierarchical structures and a high specific surface area. Small 2, 390-393 (2006).
43. Xie, S. et al. Synthesis of layered protonated titanate hierarchical microspheres with extremely large surface area for selective adsorption of organic dyes. Crystengcomm 14, 7715-7720 (2012).
44. Sutradhar, N., Sinhamahapatra, A., Pahari, S.K., Bajaj, H.C. & Panda, A.B. Room temperature synthesis of protonated layered titanate sheets using peroxo titanium carbonate complex solution. Chemical Communications 47, 7731-7733 (2011).
45. Sasaki, T. et al. PREPARATION AND ACID-BASE PROPERTIES OF A PROTONATED TITANATE WITH THE LEPIDOCROCITE-LIKE LAYER STRUCTURE. Chemistry of Materials 7, 1001-1007 (1995).
46. Rebbah, H., Desgardin, G. & Raveau, B. ATIMOS OXIDES - CATIONIC EXCHANGERS. Materials Research Bulletin 14, 1125-1131 (1979).
47. Grey, I.E., Madsen, I.C., Watts, J.A., Bursill, L.A. & Kwiatkowska, J. NEW CESIUM TITANATE LAYER STRUCTURES. Journal of Solid State Chemistry 58, 350-356 (1985).
48. Peng, C.-W. et al. (101)-exposed anatase TiO2 nanosheets. Chemistry of Materials 20, 2426-2428 (2008).
49. Zhao, B., Chen, F., Gu, X. & Zhang, J. Organic-Stabilizer-Free Synthesis of Layered Protonic Titanate Nanosheets. Chemistry-an Asian Journal 5, 1546-1549 (2010).
50. Rhee, C.H., Lee, J.S. & Chung, S.H. Synthesis of nitrogen-doped titanium oxide nanostructures via a surfactant-free hydrothermal route. Journal of Materials Research 20, 3011-3020 (2005).
51. Takezawa, Y. & Imai, H. Structural control on crystal growth of titanate in aqueous system: Selective production of nanostructures of layered titanate and anatase-type titania. Journal of Crystal Growth 308, 117-121 (2007).
52. Pavasupree, S., Ngamsinlapasathian, S., Suzuki, Y. & Yoshikawa, S. Preparation and characterization of high surface area nanosheet titania with mesoporous structure. Materials Letters 61, 2973-2977 (2007).
53. Zhao, B., Chen, F., Huang, Q. & Zhang, J. Brookite TiO2 nanoflowers. Chemical Communications, 5115-5117 (2009).
54. Zhao, B., Chen, F., Jiao, Y. & Zhang, J. Phase transition and morphological evolution of titania/titanate nanomaterials under alkalescent hydrothermal treatment. Journal of Materials Chemistry 20, 7990-7997 (2010).
55. Jiao, Y., Zhao, B., Chen, F. & Zhang, J. Insight into the crystal lattice formation of brookite in aqueous ammonia media: the electrolyte effect. Crystengcomm 13, 4167-4173 (2011).
56. Gao, Y.P. et al. A Facile One-Pot Synthesis of Layered Protonated Titanate Nanosheets Loaded with Silver Nanoparticles with Enhanced Visible-Light Photocatalytic Performance. Chemistry-an Asian Journal 8, 204-211 (2013).
57. Tang, Y. et al. Hierarchical layered titanate microspherulite: formation by electrochemical spark discharge spallation and application in aqueous pollutant treatment. Journal of Materials Chemistry 20, 10169-10178 (2010).
58. Huang, J.Q., Cao, Y.G., Liu, Z.G., Deng, Z.H. & Wang, W.C. Application of titanate nanoflowers for dye removal: A comparative study with titanate nanotubes and nanowires. Chemical Engineering Journal 191, 38-44 (2012).
59. Padinhattayil, H., Augustine, R. & Shukla, S. Dye-Adsorption Capacity of High Surface-Area Hydrogen Titanate Nanosheets Processed via Modified Hydrothermal Method. Journal of Nanoscience and Nanotechnology 13, 3035-3045 (2013).