簡易檢索 / 詳目顯示

研究生: 廖偉傑
Liao, Wei-Chieh
論文名稱: 陽離子對二氧化碳還原電催化選擇性和反應介面影響
The influence of cation on the electrocatalytic selectivity and reaction interface of carbon dioxide reduction
指導教授: 潘詠庭
Pan, Yung-Tin
口試委員: 胡啟章
Hu, Chi-Chang
王冠文
Wang, Kuan-Wen
陳翰儀
Chen, Han-Yi
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 72
中文關鍵詞: 電催化二氧化碳還原酸性環境陽離子半徑反應介面水合離子效應
外文關鍵詞: Electrocatalysis, Carbon dioxide reduction, Acidic environment, Cation radius, Reaction interface, Hydrate ion effect
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 電化學二氧化碳還原反應(Carbon dioxide reduction reaction,CO2RR),由於具有高效率的將二氧化碳轉化成可利用化學品之巨大潛力而成為研究的重點領域之一。然直到今日,該反應在催化劑材料以及系統參數研究方面仍有許多改善的空間。
    在本研究中,我們使用質子交換膜燃料電池模組作為反應器,並利用1.5 M的鹼金屬陽離子溶液將商用的質子交換膜的質子置換出來,反應系統的酸鹼度因而產生了變化,從而為陰極創造了一個近似中性的環境,不同鹼金屬族的陽離子會對離子交換膜的濕潤程度產生影響,進而導致了系統質子輸送能力的落差,決定了系統最終的選擇率差異。
    除了對反應界面以及系統的質子輸送能力進行探討之外,觸媒的溶解以及電沉積也會受到陽離子影響。電沉積的觸媒形貌以及粗糙度也是決定選擇率的關鍵因素之一。鋰、鈉等小半徑的陽離子系統推測由於強烈的產氫反應造成觸媒溶解以及限制了電沉積的反應,鉀、銫等較大尺寸的離子系統因為較少的質子競爭吸附,有更多的觸媒能夠在被沉積到基材上,同時也產生不同的形貌以及晶型。這說明了系統的選擇率是由反應界面以及觸媒的性質共同決定的。


    The electrochemical carbon dioxide reduction reaction (CO2RR) has become one of the key areas of research due to its great potential for highly efficient conversion of carbon dioxide into usable chemicals. Until today, however, there is still room for improvement in the research and development of catalyst materials and system components.
    In this study, we used the proton exchange membrane fuel cell module as the reactor, and used alkali metal cation substituted the commercial proton exchange membrane (Nafion XL) to control the pH of the reaction system, thus creating an approximately neutral environment for the cathode. The cations of different alkali metal groups showed apparent effect on the ability of the ion exchange membrane to uptake water, which in turn the proton conductivity from anode to cathode. The regulated proton transport is proposed to be responsible for the observed significant difference in CO2RR selectivity over hydrogen production.
    In addition to the discussion of reaction interface and the proton transport of the system, the dissolution and impact of membrane cations to catalyst dissolution and deposition is also revealed. It is observed that the cation system with small radius such as lithium and sodium have caused severe dissolution of the Cu catalyst while the largest Cs cation on the other hand, appeared to influence the restructuring into well define crystals. Such cation dependent dissolution/redeposition is also considered to contribute significantly to the observed variations in CO2RR faradaic efficiencies.

    目錄 摘要 I ABSTRACT II 誌謝辭 III 圖目錄 VII 表目錄 X 第一章 緒論 1 第二章 文獻回顧 2 2.1 薄膜電極 2 2.1.1 氣體擴散媒介 (gas diffusion media) 3 2.1.2 離子交換膜 3 2.2 研究背景 4 2.6 二氧化碳還原反應 5 2.3.1 二氧化碳還原反應介紹 5 2.4 電催化二氧化碳還原反應介紹 6 2.4.1 電化學反應系統 6 2.4.2 續式反應電池模組介紹 8 2.5 電催化二氧化碳還原機制 9 2.5.1 Sabatier principle 10 2.5.2 電催化二氧化碳還原觸媒介紹 12 3.6 影響電催化二氧化碳還原反應介面的因素 14 2.6.1 水的參與 14 2.6.2 反應介面的pH質影響 15 2.6.3 電解液陽離子對反應介面的影響 16 2.6.4 固態電解液層(Nafion layer) 17 2.7 研究動機 18 第三章 實驗方法與儀器 20 3.1. 實驗藥品及耗材 20 3.2. 實驗儀器 23 3.3 分析儀器 24 3.3.1 X射線繞射分析儀 (X-ray diffraction analysis, XRD) 24 3.3.2 熱重分析儀 (Thermogravimetric analysis, TGA) 24 3.3.3 氣相層析儀 (Gas chromatography, GC) 25 3.3.4 掃描式電子顯微鏡 (Scanning electro microscope, SEM) 25 3.4 實驗方法 26 3.4.1 Cu/C觸媒製備 26 3.4.2 Cu/MgO 觸媒製備 26 3.4.3 陽極觸媒漿料製備 26 3.4.5 Cu/C觸媒漿料製備 27 3.4.6 Cu/MgO觸媒製備 27 3.4.7 sodium form 質子交換膜製備 27 3.4.8 電極製備 28 3.4.9 電化學測試裝置 28 3.4.10 電化學分析方法 29 線性掃描伏安法 29 定電位放電法 29 法拉第定律 29 第四章 結果與討論 31 4.1 Cu/C觸媒分析 31 4.2 二氧化碳還原之反應界面討論 35 4.3 薄膜陽離子以及銅觸媒流失 40 4.4 不同陽離子對觸媒溶解的效應 46 第五章 結論 49 第六章 未來工作 50 第七章 參考文獻 56 第八章 附錄 62

    1. Li, Y. C.; Zhou, D.; Yan, Z.; Gonçalves, R. H.; Salvatore, D. A.; Berlinguette, C. P.; Mallouk, T. E., Electrolysis of CO2 to Syngas in Bipolar Membrane-Based Electrochemical Cells. ACS Energy Lett. 2016, 1 (6), 1149-1153.
    2. Liu, Z.; Yang, H.; Kutz, R.; Masel, R. I., CO2 Electrolysis to CO and O2 at High Selectivity, Stability and Efficiency Using Sustainion Membranes. J. Electrochem. Soc. 2018, 165 (15), J3371-J3377.
    3. Pătru, A.; Binninger, T.; Pribyl, B.; Schmidt, T. J., Design Principles of Bipolar Electrochemical Co-Electrolysis Cells for Efficient Reduction of Carbon Dioxide from Gas Phase at Low Temperature. J. Electrochem. Soc. 2019, 166 (2), F34-F43.
    4. Weekes, D. M.; Salvatore, D. A.; Reyes, A.; Huang, A.; Berlinguette, C. P., Electrolytic CO Reduction in a Flow Cell. Acc. Chem. Res. 2018, 51 (4), 910-918.
    5. Wu, J.; Risalvato, F. G.; Sharma, P. P.; Pellechia, P. J.; Ke, F.-S.; Zhou, X.-D., Electrochemical Reduction of Carbon Dioxide. J. Electrochem. Soc. 2013, 160 (9), F953-F957.
    6. Spori, C.; Kwan, J. T. H.; Bonakdarpour, A.; Wilkinson, D. P.; Strasser, P., The Stability Challenges of Oxygen Evolving Catalysts: Towards a Common Fundamental Understanding and Mitigation of Catalyst Degradation. Angew. Chem. Int. Ed. Engl. 2017, 56 (22), 5994-6021.
    7. Sung, C.-C.; Liu, C.-Y.; Cheng, C. C. J., Performance improvement by a glue-functioned Nafion layer coating on gas diffusion electrodes in PEM fuel cells. Int. J. Hydrog. Energy 2014, 39 (22), 11700-11705.
    8. Higgins, D.; Hahn, C.; Xiang, C.; Jaramillo, T. F.; Weber, A. Z., Gas-Diffusion Electrodes for Carbon Dioxide Reduction: A New Paradigm. ACS Energy Lett. 2018, 4 (1), 317-324.
    9. García de Arquer, F. P.; Dinh, C.-T.; Ozden, A.; Wicks, J.; McCallum, C.; Kirmani, A. R.; Nam, D.-H.; Gabardo, C.; Seifitokaldani, A.; Wang, X.; Li, Y. C.; Li, F.; Edwards, J.; Richter, L. J.; Thorpe, S. J.; Sinton, D.; Sargent, E. H., CO2 electrolysis to multicarbon products at activities greater than 1 A cm-2. Science 2020, 367, 661-666.
    10. Küngas, R., Review—Electrochemical CO2 Reduction for CO Production: Comparison of Low- and High-Temperature Electrolysis Technologies. J. Electrochem. Soc. 2020, 167 (4).
    11. Verheggen, B.; Strengers, B.; Cook, J.; van Dorland, R.; Vringer, K.; Peters, J.; Visser, H.; Meyer, L., Scientists' views about attribution of global warming. Environ. Sci. Technol. 2014, 48 (16), 8963-71.
    12. McCoy, M.; Johnson, J., DEALING WITH CO. Chem. Eng. News 2009, 87 (14), 5.
    13. Ades, M., Global Climate. Bull Am Meteorol Soc 2020, 101 (8), S9-S128.
    14. Fan, L.; Xia, C.; Yang, F.; Wang, J.; Wang, H.; Lu, Y., Strategies in catalysts and electrolyzer design for electrochemical CO2 reduction toward C2+ products. Science Advances 2020, 6.
    15. Kumaravel, V.; Bartlett, J.; Pillai, S. C., Photoelectrochemical Conversion of Carbon Dioxide (CO2) into Fuels and Value-Added Products. ACS Energy Lett. 2020, 5 (2), 486-519.
    16. Jayathilake, B. S.; Bhattacharya, S.; Vaidehi, N.; Narayanan, S. R., Efficient and Selective Electrochemically Driven Enzyme-Catalyzed Reduction of Carbon Dioxide to Formate using Formate Dehydrogenase and an Artificial Cofactor. Acc. Chem. Res. 2019, 52 (3), 676-685.
    17. Darensbourg, D. J.; Rokicki, A.; Darensbourg, M. Y., Facile reduction of carbon dioxide by anionic Group 6b metal hydrides. Chemistry relevant to catalysis of the water-gas shift reaction. J. Am. Chem. Soc. 1981, 103 (11), 3223-3224.
    18. Rosen, B. A.; Salehi-Khojin, A.; Thorson, M. R.; Zhu, W.; Whipple, D. T.; Kenis, P. J. A.; Masel, R. I., Ionic Liquid–Mediated Selective Conversion of CO2 to CO at Low Overpotentials. Science 2011, 334, 643-644.
    19. Zhao, S.; Jin, R.; Jin, R., Opportunities and Challenges in CO2 Reduction by Gold- and Silver-Based Electrocatalysts: From Bulk Metals to Nanoparticles and Atomically Precise Nanoclusters. ACS Energy Lett. 2018, 3 (2), 452-462.
    20. Varela, A. S.; Ju, W.; Bagger, A.; Franco, P.; Rossmeisl, J.; Strasser, P., Electrochemical Reduction of CO2 on Metal-Nitrogen-Doped Carbon Catalysts. ACS Catal. 2019, 9 (8), 7270-7284.
    21. Koper, M. T. M., Volcano Activity Relationships for Proton-Coupled Electron Transfer Reactions in Electrocatalysis. Top Catal 2015, 58 (18-20), 1153-1158.
    22. Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Norskov, J. K.; Jaramillo, T. F., Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355 (6321).
    23. Asset, T.; Garcia, S. T.; Herrera, S.; Andersen, N.; Chen, Y.; Peterson, E. J.; Matanovic, I.; Artyushkova, K.; Lee, J.; Minteer, S. D.; Dai, S.; Pan, X.; Chavan, K.; Calabrese Barton, S.; Atanassov, P., Investigating the Nature of the Active Sites for the CO2 Reduction Reaction on Carbon-Based Electrocatalysts. ACS Catal. 2019, 9 (9), 7668-7678.
    24. Zhang, S.; Fan, Q.; Xia, R.; Meyer, T. J., CO2 Reduction: From Homogeneous to Heterogeneous Electrocatalysis. Acc. Chem. Res. 2020, 53 (1), 255-264.
    25. Ma, S.; Luo, R.; Gold, J. I.; Yu, A. Z.; Kim, B.; Kenis, P. J. A., Carbon nanotube containing Ag catalyst layers for efficient and selective reduction of carbon dioxide. J. Mater. Chem. A 2016, 4 (22), 8573-8578.
    26. Zhu, W.; Michalsky, R.; Metin, Ö.; Lv, H.; Guo, S.; Wright, C. J.; Sun, X.; Peterson, A. A.; Sun, S., Monodisperse Au Nanoparticles for Selective Electrocatalytic Reduction of CO2 to CO. J. Am. Chem. Soc. 2013, 135 (45), 16833-16836.
    27. Choi, S. Y.; Jeong, S. K.; Kim, H. J.; Baek, I.-H.; Park, K. T., Electrochemical Reduction of Carbon Dioxide to Formate on Tin–Lead Alloys. ACS Sustain. Chem. Eng. 2016, 4 (3), 1311-1318.
    28. Kim, J.; Choi, W.; Park, J. W.; Kim, C.; Kim, M.; Song, H., Branched Copper Oxide Nanoparticles Induce Highly Selective Ethylene Production by Electrochemical Carbon Dioxide Reduction. J. Am. Chem. Soc. 2019, 141 (17), 6986-6994.
    29. Xu, H.; Rebollar, D.; He, H.; Chong, L.; Liu, Y.; Liu, C.; Sun, C.-J.; Li, T.; Muntean, J. V.; Winans, R. E.; Liu, D.-J.; Xu, T., Highly selective electrocatalytic CO2 reduction to ethanol by metallic clusters dynamically formed from atomically dispersed copper. Nat. Energy 2020, 5 (8), 623-632.
    30. Dang, S.; Qin, B.; Yang, Y.; Wang, H.; Cai, J.; Han, Y.; Li, S.; Gao, P.; Sun, Y., Rationally designed indium oxide catalysts for CO2 hydrogenation to methanol with high activity and selectivity. Sci. Adv. 2020, 6.
    31. Wang, Z.; Hou, P.; Wang, Y.; Xiang, X.; Kang, P., Acidic Electrochemical Reduction of CO2 Using Nickel Nitride on Multiwalled Carbon Nanotube as Selective Catalyst. ACS Sustain. Chem. Eng. 2019, 7 (6), 6106-6112.
    32. Rutkowska, I. A.; Szaniawska, E.; Taniewicz, J.; Wadas, A.; Seta, E.; Kowalski, D.; Kulesza, P. J., Electrocatalytic and Photoelectrochemical Reduction of Carbon Dioxide at Hierarchical Hybrid Films of Copper(I) Oxide Decorated with Tungsten(VI) Oxide Nanowires. J. Electrochem. Soc. 2019, 166 (5), H3271-H3278.
    33. Li, L.; Zhao, Z.-J.; Hu, C.; Yang, P.; Yuan, X.; Wang, Y.; Zhang, L.; Moskaleva, L.; Gong, J., Tuning Oxygen Vacancies of Oxides to Promote Electrocatalytic Reduction of Carbon Dioxide. ACS Energy Lett. 2020, 5 (2), 552-558.
    34. Hoang, T. T. H.; Verma, S.; Ma, S.; Fister, T. T.; Timoshenko, J.; Frenkel, A. I.; Kenis, P. J. A.; Gewirth, A. A., Nanoporous Copper-Silver Alloys by Additive-Controlled Electrodeposition for the Selective Electroreduction of CO2 to Ethylene and Ethanol. J. Am. Chem. Soc. 2018, 140 (17), 5791-5797.
    35. Chatterjee, S.; Griego, C.; Hart, J. L.; Li, Y.; Taheri, M. L.; Keith, J.; Snyder, J. D., Free Standing Nanoporous Palladium Alloys as CO Poisoning Tolerant Electrocatalysts for the Electrochemical Reduction of CO2 to Formate. ACS Catal. 2019, 9 (6), 5290-5301.
    36. Wang, Y.; Wang, Z.; Dinh, C.-T.; Li, J.; Ozden, A.; Golam Kibria, M.; Seifitokaldani, A.; Tan, C.-S.; Gabardo, C. M.; Luo, M.; Zhou, H.; Li, F.; Lum, Y.; McCallum, C.; Xu, Y.; Liu, M.; Proppe, A.; Johnston, A.; Todorovic, P.; Zhuang, T.-T.; Sinton, D.; Kelley, S. O.; Sargent, E. H., Catalyst synthesis under CO2 electroreduction favours faceting and promotes renewable fuels electrosynthesis. Nat. Catal 2019, 3 (2), 98-106.
    37. Ma, W.; Xie, S.; Liu, T.; Fan, Q.; Ye, J.; Sun, F.; Jiang, Z.; Zhang, Q.; Cheng, J.; Wang, Y., Electrocatalytic reduction of CO2 to ethylene and ethanol through hydrogen-assisted C–C coupling over fluorine-modified copper. Nat. Catal 2020, 3 (6), 478-487.
    38. He, M.; Li, C.; Zhang, H.; Chang, X.; Chen, J. G.; Goddard, W. A., 3rd; Cheng, M. J.; Xu, B.; Lu, Q., Oxygen induced promotion of electrochemical reduction of CO2 via co-electrolysis. Nat. Commun. 2020, 11 (1), 3844.
    39. Varela, A. S.; Kroschel, M.; Leonard, N. D.; Ju, W.; Steinberg, J.; Bagger, A.; Rossmeisl, J.; Strasser, P., pH Effects on the Selectivity of the Electrocatalytic CO2 Reduction on Graphene-Embedded Fe–N–C Motifs: Bridging Concepts between Molecular Homogeneous and Solid-State Heterogeneous Catalysis. ACS Energy Lett. 2018, 3 (4), 812-817.
    40. Torbensen, K.; Joulié, D.; Ren, S.; Wang, M.; Salvatore, D.; Berlinguette, C. P.; Robert, M., Molecular Catalysts Boost the Rate of Electrolytic CO2 Reduction. ACS Energy Lett. 2020, 5 (5), 1512-1518.
    41. Li, H.; Liu, X.; Chen, S.; Yang, D.; Zhang, Q.; Song, L.; Xiao, H.; Zhang, Q.; Gu, L.; Wang, X., Edge‐Exposed Molybdenum Disulfide with N‐Doped Carbon Hybridization: A Hierarchical Hollow Electrocatalyst for Carbon Dioxide Reduction. Adv. Energy Mater. 2019, 9 (18).
    42. Ye, Y.; Qian, J.; Yang, H.; Su, H.; Lee, K. J.; Etxebarria, A.; Cheng, T.; Xiao, H.; Yano, J.; Goddard, W. A., 3rd; Crumlin, E. J., Synergy between a Silver-Copper Surface Alloy Composition and Carbon Dioxide Adsorption and Activation. ACS Appl. Mater. Interfaces 2020, 12 (22), 25374-25382.
    43. Ringe, S.; Morales-Guio, C. G.; Chen, L. D.; Fields, M.; Jaramillo, T. F.; Hahn, C.; Chan, K., Double layer charging driven carbon dioxide adsorption limits the rate of electrochemical carbon dioxide reduction on Gold. Nat. Commun. 2020, 11 (1), 33.
    44. Yang, K.; Kas, R.; Smith, W. A., In Situ Infrared Spectroscopy Reveals Persistent Alkalinity near Electrode Surfaces during CO2 Electroreduction. J. Am. Chem. Soc. 2019, 141 (40), 15891-15900.
    45. Konig, M.; Vaes, J.; Klemm, E.; Pant, D., Solvents and Supporting Electrolytes in the Electrocatalytic Reduction of CO2. iScience 2019, 19, 135-160.
    46. Banerjee, S.; Zhang, Z.-Q.; Hall, A. S.; Thoi, V. S., Surfactant Perturbation of Cation Interactions at the Electrode–Electrolyte Interface in Carbon Dioxide Reduction. ACS Catal. 2020, 10 (17), 9907-9914.
    47. Verma, S.; Lu, X.; Ma, S.; Masel, R. I.; Kenis, P. J., The effect of electrolyte composition on the electroreduction of CO2 to CO on Ag based gas diffusion electrodes. Phys. Chem. Chem. Phys. 2016, 18 (10), 7075-84.
    48. Malkani, A. S.; Anibal, J.; Xu, B., Cation Effect on Interfacial CO2 Concentration in the Electrochemical CO2 Reduction Reaction. ACS Catal. 2020, 10 (24), 14871-14876.
    49. Resasco, J.; Chen, L. D.; Clark, E.; Tsai, C.; Hahn, C.; Jaramillo, T. F.; Chan, K.; Bell, A. T., Promoter Effects of Alkali Metal Cations on the Electrochemical Reduction of Carbon Dioxide. J. Am. Chem. Soc. 2017, 139 (32), 11277-11287.
    50. Ringe, S.; Clark, E. L.; Resasco, J.; Walton, A.; Seger, B.; Bell, A. T.; Chan, K., Understanding cation effects in electrochemical CO2 reduction. Energy Environ. Sci. 2019, 12 (10), 3001-3014.
    51. Ozden, A.; Li, F.; Garcı́a de Arquer, F. P.; Rosas-Hernández, A.; Thevenon, A.; Wang, Y.; Hung, S.-F.; Wang, X.; Chen, B.; Li, J.; Wicks, J.; Luo, M.; Wang, Z.; Agapie, T.; Peters, J. C.; Sargent, E. H.; Sinton, D., High-Rate and Efficient Ethylene Electrosynthesis Using a Catalyst/Promoter/Transport Layer. ACS Energy Lett. 2020, 5 (9), 2811-2818.
    52. Yang, K.; Kas, R.; Smith, W. A.; Burdyny, T., Role of the Carbon-Based Gas Diffusion Layer on Flooding in a Gas Diffusion Electrode Cell for Electrochemical CO2 Reduction. ACS Energy Lett. 2020, 6 (1), 33-40.
    53. Zhang, X.; Li, J.; Li, Y. Y.; Jung, Y.; Kuang, Y.; Zhu, G.; Liang, Y.; Dai, H., Selective and High Current CO2 Electro-Reduction to Multicarbon Products in Near-Neutral KCl Electrolytes. J. Am. Chem. Soc. 2021, 143 (8), 3245-3255.
    54. Kim, T.; Palmore, G. T. R., A scalable method for preparing Cu electrocatalysts that convert CO2 into C2+ products. Nat. Commun. 2020, 11 (1), 3622.
    55. Larrazabal, G. O.; Strom-Hansen, P.; Heli, J. P.; Zeiter, K.; Therkildsen, K. T.; Chorkendorff, I.; Seger, B., Analysis of Mass Flows and Membrane Cross-over in CO2 Reduction at High Current Densities in an MEA-Type Electrolyzer. ACS Appl. Mater. Interfaces 2019, 11 (44), 41281-41288.
    56. Endrodi, B.; Kecsenovity, E.; Samu, A.; Darvas, F.; Jones, R. V.; Torok, V.; Danyi, A.; Janaky, C., Multilayer Electrolyzer Stack Converts Carbon Dioxide to Gas Products at High Pressure with High Efficiency. ACS Energy Lett. 2019, 4 (7), 1770-1777.
    57. DeLuca, N. W.; Elabd, Y. A., Polymer electrolyte membranes for the direct methanol fuel cell: A review. J Polym Sci B Polym Phys 2006, 44 (16), 2201-2225.
    58. Mauritz, K. A.; Moore, R. B., State of Understanding of Nafion. Chem. Rev. 2004, 104 (10), 4535-4586.
    59. Weber, A. Z.; Newman, J., Modeling Transport in Polymer-Electrolyte Fuel Cells. Chem. Rev. 2004, 104 (10), 4679-4726.
    60. Hou, J.; Zhang, Z.; Madsen, L. A., Cation/anion associations in ionic liquids modulated by hydration and ionic medium. J Phys Chem B 2011, 115 (16), 4576-82.
    61. Donose, B. C.; Vakarelski, I. U.; Higashitani, K., Silica Surfaces Lubrication by Hydrated Cations Adsorption from Electrolyte Solutions. Langmuir 2005, 21 (5), 1834-1839.
    62. Mahler, J.; Persson, I., A study of the hydration of the alkali metal ions in aqueous solution. Inorg. Chem. 2012, 51 (1), 425-38.
    63. Carlin, R. L., An introduction to transition-metal chemistry: Ligand field theory (Orgel, Leslie E.). J. Chem. Educ. 1967, 44 (7), A609.
    64. Okada, T.; Satou, H.; Okuno, M.; Yuasa, M., Ion and Water Transport Characteristics of Perfluorosulfonated Ionomer Membranes with H+ and Alkali Metal Cations. The Journal of Physical Chemistry B 2002, 106 (6), 1267-1273.
    65. Hongsirikarn, K.; Goodwin, J. G.; Greenway, S.; Creager, S., Effect of cations (Na+, Ca2+, Fe3+) on the conductivity of a Nafion membrane. J. Power Sources 2010, 195 (21), 7213-7220.
    66. Palomo, J., Competitive absorption of quaternary ammonium and alkali metal cations into a Nafion cation-exchange membrane. J. Membr. Sci. 2003, 215 (1-2), 103-114.
    67. Baker, A. M.; Crothers, A. R.; Chintam, K.; Luo, X.; Weber, A. Z.; Borup, R. L.; Kusoglu, A., Morphology and Transport of Multivalent Cation-Exchanged Ionomer Membranes Using Perfluorosulfonic Acid–CeZ+ as a Model System. ACS Appl. Polym. Mater. 2020, 2 (8), 3642-3656.
    68. Peng, J.; Lou, K.; Goenaga, G.; Zawodzinski, T., Transport Properties of Perfluorosulfonate Membranes Ion Exchanged with Cations. ACS Appl. Mater. Interfaces 2018, 10 (44), 38418-38430.
    69. Hawthorne, K. L.; Petek, T. J.; Miller, M. A.; Wainright, J. S.; Savinell, R. F., An Investigation into Factors Affecting the Iron Plating Reaction for an All-Iron Flow Battery. J. Electrochem. Soc. 2014, 162 (1), A108-A113.
    70. Lee, H.; Triviño, M. L. T.; Hwang, S.; Kwon, S. H.; Lee, S. G.; Moon, J. H.; Yoo, J.; Seo, J. G., In Situ Observation of Carbon Dioxide Capture on Pseudo-Liquid Eutectic Mixture-Promoted Magnesium Oxide. ACS Appl. Mater. Interfaces 2018, 10 (3), 2414-2422.
    71. Phalak, N.; Deshpande, N.; Fan, L. S., Investigation of High-Temperature Steam Hydration of Naturally Derived Calcium Oxide for Improved Carbon Dioxide Capture Capacity over Multiple Cycles. Energy & Fuels 2012, 26 (6), 3903-3909.
    72. Ahmad, K.; Mobin, Shaikh M., High surface area 3D-MgO flowers as the modifier for the working electrode for efficient detection of 4-chlorophenol. Nanoscale Advances 2019, 1 (2), 71

    QR CODE