研究生: |
林律志 Lin, Lyu-Chih |
---|---|
論文名稱: |
半導體雷射受光回饋擾動下之非線性動態特性與其應用 Characteristics and Applications of Nonlinear Dynamics Generated by Semiconductor Lasers Subject to Optical Feedback |
指導教授: |
林凡異
Lin, Fan-Yi |
口試委員: |
黃勝廣
Hwang, Sheng-Kwang 馮開明 Feng, Kai-Ming 黃承彬 Huang, Chen-Bin 阮于珊 Juan, Yu-Shan |
學位類別: |
博士 Doctor |
系所名稱: |
電機資訊學院 - 光電工程研究所 Institute of Photonics Technologies |
論文出版年: | 2017 |
畢業學年度: | 106 |
語文別: | 英文 |
論文頁數: | 64 |
中文關鍵詞: | 半導體雷射 、光回饋 、非線性動態 、雷射穩定度 |
外文關鍵詞: | Semiconductor laser, optical feedback, Nonlinear dynamic, Laser stability |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要是研究光回饋半導體雷射的動態特性與應用。當光回饋到半導體雷射時,將影響其載子濃度與雷射共振腔內折射率,產生頻率推移效應(frequency pushing effect)且改變其共振腔頻率(cavity resonant frequency)。調整光回饋強度以及外部共振腔長可以讓半導體雷射的出光有著豐富的非線性動態,像是混沌態(chaos, C)、類週期振盪態(quasi-periodic, QP)、週期一振盪態(period-one, P1)、規律脈衝(regular pulsing, RP)、低頻擾動態(low frequency fluctuation, LFF)等。本論文主要分為四個部分,第一部分我們介紹半導體雷射受到不同干擾方式產生非線性動態,且著重於光回饋半導體雷射的研究。第二部分將週期一非線性動態成功應用於一新穎雙頻都普勒雷射測速儀上,除具斑點雜訊抑制、高解析度外並同時擁有辨別物體方向之能力。由於其高解析的關鍵在於產生穩定且低線寬的週期一振盪態作為光源,且為了取代厚重且昂貴的微波訊號產生器,於第三部分中,我們根據量化穩定度的參數,研究且比較了光注入與光回饋量子井半導體雷射隨著不同條件所產生的週期一振盪態的線寬以及穩定度。此外,由於量子點雷射擁有比量子井雷射較低的相對強度雜訊(relative intensity noise)以及較好的溫度穩定性(temperature sensitivity),相信產生的週期振盪態可以更穩定,於第四部分中我們研究了光回饋量子點多模半導體雷射分別單一激發基態與激發態,並分析隨著不同光回饋條件產生的動態特性,同時比較了脈衝封包頻率隨著不同外部腔長的變化,以及畫出雷射隨著不同光回饋參數的動態分佈圖。
We investigate the characteristics and applications of nonlinear dynamics generated by semiconductor lasers subject to optical feedback. The optical feedback perturbs the carrier and the refractive index in the laser cavity shifting the cavity resonant frequency. Rich dynamics such as chaos (C), quasi-periodic (QP), period-one (P1), regular pulse package (RPP), and low frequency fluctuation (LFF) can be generated. In the first part of this dissertation, we introduce the nonlinear dynamics generated by semiconductor lasers subject to different perturbations and focus on the optical feedback dynamics. Next, we discuss the P1 oscillation and utilize it as the light source in developing a self-mixing dual-frequency laser Doppler velocimeter (SM DF-LDV) capable of the speckle noise reduction and the coherence enhancement. For improving the velocity resolution and replacing the bulky and costly microwave signal generator, in the second part, we compare linewidths and stabilities of the P1 oscillations generated by optical injection (OI) and optical feedback (OF). In addition, quantum dot lasers possessing low relative intensity noise (RIN) and low temperature sensitivity are very different from the quantum well (QW) lasers. They are expected to generate more stable periodic oscillation. In the fourth part, we investigate the dynamical states and their spectral characteristics of the optical feedback multimode quantum dot (QD) semiconductor lasers emitting exclusively on sole ground state and excited state.
[1] G. Giuliani, M. Norgia, S. Donati, and T. Bosch, "Laser diode self-mixing technique for sensing applications," J. Opt. A: Pure Appl. Opt., vol. 4, pp. S283-S294, 2002.
[2] H. W. Mocker and P. E. Bjork, "High accuracy laser Doppler velocimeter using stable long-wavelength semiconductor lasers," Appl. Opt., vol. 28, pp. 4914-4919, 1989.
[3] P. Martin and S. Rothberg, "Introducing speckle noise maps for laser vibrometry," Opt. Lasers Eng., vol. 47, pp. 431-442, 2009.
[4] C. H. Cheng, C. W. Lee, T. W. Lin, and F. Y. Lin, "Dual-frequency laser Doppler velocimeter for speckle noise reduction and coherence enhancement," Opt. Express, vol. 20, pp. 20255-20265, 2012.
[5] J. P. Yao, "Microwave photonics," J. Lightw. Technol., vol. 27, pp. 314-335, 2009.
[6] X. Q. Qi and J. M. Liu, "Photonic microwave applications of the dynamics of semiconductor lasers," IEEE J. Sel. Top. Quantum Electron., vol. 17, pp. 1198-1211, 2011.
[7] C. H. Cheng, L. C. Lin, and F. Y. Lin, "Self-mixing dual-frequency laser Doppler velocimeter," Opt. Express, vol. 22, pp. 3600-3610, 2014.
[8] Y. H. Hung and S. K. Hwang, "Photonic microwave amplication for radio-over-fiber links using period-one nonlinear dynamics of semiconductor lasers," Opt. Lett., vol. 38, pp. 3355-3358, 2013.
[9] S. K. Hwang, H. F. Chen, and C. Y. Lin, "All-optical frequency conversion using nonlinear dynamics of semiconductor lasers," Opt. Lett., vol. 34, pp. 812-814, 2009.
[10] C. Cui, X. Fu, and S. C. Chan, "Double-locked semiconductor laser for radio-over-fiber uplink transmission," Opt. Lett., vol. 34, pp. 3821-3823, 2009.
[11] C. Cui and S. C. Chan, "Performance analysis on using period-one oscilation of optically injected semiconductor lasers for radio-over-fiber uplinks," IEEE J. Quantum Electron., vol. 48, pp. 490-499, 2012.
[12] M. Pochet, T. Locke, and N. G. Usechak, "Generation and modulation of a millimeter-wave subcarrier on an optical frequency generated via optical injection," IEEE Photon. J., vol. 4, pp. 1881-1891, 2012.
[13] S. C. Chan, "Analysis of an optically injected semiconductor laser for microwave
generation," IEEE J. Quantum Electron., vol. 46, pp. 421-428, 2010.
[14] Y. S. Juan and F. Y. Lin, "Photonic generation of broadly tunable microwave signals
utilizing a dual-beam optically injected semiconductor lasers," IEEE Photon. J.,
vol. 3, pp. 644-650, 2011.
[15] S. C. Chan, S. K. Hwang, and J. M. Liu, "Period-one oscillation for photonic microwave
transmission using an optically injected semiconductor laser," Opt. Express,
vol. 15, pp. 14921-14935, 2007.
[16] S. K. Hwang, J. M. Liu, and J. K. White, "Characteristics of period-one oscillations
in semiconductor lasers subject to optical injection," IEEE J. Sel. Top. Quantum
Electron., vol. 10, pp. 974-981, 2004.
[17] S. Donati and S. K. Hwang, "Chaos and high-level dynamics in coupled lasers and
their applications," Prog. Quantum Electron., vol. 36, pp. 293-341, 2012.
[18] U. Gliese, T. N. Nielsen, M. Bruun, E. L. Christensen, K. E. Stubkjaer, S. Lindgren,
and B. Broberg, "A wideband heterodyne optical phase-locked loop for generation of 3-18 GHz microwave carriers," IEEE Photon. Technol. Lett., vol. 4, pp. 936-938,
1992.
[19] C. T. Lin, P. T. Shih, W. J. Jiang, J. Chen, P. C. Peng, and S. Chi, "A continuously
tunable and lterless optical millimeter-wave generation via frequency octupling,"
Opt. Express, vol. 17, pp. 19749-19756, 2009.
[20] J. P. Zhuang and S. C. Chan, "Tunable photonics microwave generation using optically
injected semiconductor laser dynamics with optical feedback stabilization,"
Opt. Lett., vol. 38, pp. 344-346, 2013.
[21] J. P. Zhuang and S. C. Chan, "Phase noise characteristics of microwave signals
generated by semiconductor laser dynamics," Opt. Express, vol. 23, pp. 2777-2797,
2015.
[22] K. H. Lo, S. K. Hwang, and S. Donati, "Optical feedback stabilization of photonic
microwave generation using period-one nonlinear dynamics of semiconductor lasers,"
Opt. Express, vol. 22, pp. 18648-18661, 2014.
[23] S. C. Chan and J. M. Liu, "Tunable narrow-linewidth photonic microwave generation
using semiconductor laser dynamics," IEEE J. Sel. Top. Quantum Electron., vol. 10,
pp. 1025-1032, 2004.
[24] T. B. Simpson, J. M. Liu, M. AlMulla, N. G. Usechak, and V. Kovanis, "Linewidth
sharpening via polarizationrotated feedback in optically injected semiconductor laser
oscillators," IEEE J. Sel. Top. Quantum Electron., vol. 19, p. 1500807, 2013.
[25] T. B. Simpson, J. M. Liu, M. AlMulla, N. G. Usechak, and V. Kovanis, "Limitcycle
dynamics with reduced sensitivity to perturbations," Phys. Rev. Lett., vol. 112,
p. 023901, 2014.
[26] T. Newell, D. Bossert, A. Stintz, B. Fuchs, K. Malloy, and L. Lester, "Gain and
linewidth enhancement factor in InAs quantum-dot laser diodes," IEEE Photon.
Technol. Lett., vol. 11, pp. 1527-1529, 1999.
[27] A. A. Ukhanov, A. Stintz, P. G. Eliseev, and K. J. Malloy, "Comparison of the
carrier induced refractive index, gain, and linewidth enhancement factor in quantum
dot and quantum well lasers," Appl. Phys. Lett., vol. 84, pp. 1058-1060, 2004.
[28] O. B. Shchekin and D. G. Deppe, "1.3 m InAs quantum dot laser with T0 = 161
K from 0 to 80 C," Appl. Phys. Lett., vol. 80, p. 3277, 2002.
[29] A. Capua, L. Rozenfeld, V. Mikhelashvili, G. Eisenstein, M. Kuntz, M. Laemmlin,
and D. Bimberg, "Direct correlation between a highly damped modulation response
and ultra low relative intensity noise in an InAs/GaAs quantum dot laser," Opt.
Express, vol. 15, pp. 5388-5393, 2007.
[30] D. Arsenijevic, A. Schliwa1, H. Schmeckebier, M. Stubenrauch, M. Spiegelberg,
D. Bimberg1, V. Mikhelashvili, and G. Eisenstein, "Comparison of dynamic properties
of ground- and excited-state emission in p-doped InAs/GaAs quantum-dot
lasers," Appl. Phys. Lett., vol. 104, p. 181101, 2014.
[31] C. Wang, B. Lingnau, K. Ludge, J. Even, and F. Grillot, "Enhanced dynamic performance
of quantum dot semiconductor lasers operating on the excited state," IEEE
J. Quantum Electron., vol. 50, pp. 1-9, 2014.
[32] T. Heil, I. Fischer, W. Elsaer, and A. Gavrielides, "Dynamics of semiconductor
lasers subject to delayed optical feedback: The short cavity regime," Phys. Rev.
Lett., vol. 87, p. 243901, 2001.
[33] M. Sciamanna, A. Tabaka, H. Thienpont, and K. Panajotov, "Intensity behavior underlying
pulse packages in semiconductor lasers that are subject to optical feedback,"
J. Opt. Soc. Am. B, vol. 22, pp. 777-785, 2005.
[34] T. Heil, I. Fischer, W. Elsaber, B. Krauskopf, K. Green, and A. Gavrielides, "Delay
dynamics of semiconductor lasers with short external cavities: Bifurcation scenarios
and mechanisms," Phys. Rev. E, vol. 67, p. 0066214, 2003.
[35] H. Huang, D. Arsenijevic, K. Schires, T. Sadeev, D. Bimberg, and F. Grillot, "Multimode
optical feedback dynamics of InAs/GaAs quantum-dot lasers emitting on
dierent lasing states," AIP Adv., vol. 6, p. 125114, 2016.
[36] Y. C. Chen, H. G. Winful, and J. M. Liu, "Subharmonic bifurcations and irregular
pulsing behavior of modulated semiconductor lasers," Appl. Phys. Lett., vol. 47,
pp. 208-210, 1985.
[37] G. P. Agrawal, "Eect of gain nonlinearities on period doubling and chaos in directly
modulated semiconductor lasers," Appl. Phys. Lett., vol. 49, pp. 1013-1015, 1986.
[38] L. Chusseau, E. Hemery, and J. M. Lourtioz, "Period doubling in directly modulated
InGaAsP semiconductor lasers," Appl. Phys. Lett., vol. 55, pp. 822-824, 1989.
[39] H. F. Liu and W. F. Ngai, "Nonlinear dynamics of a directly modulated 1.55 um
InGaAsP distributed feedback semiconductor laser," IEEE J. Quantum Electron.,
vol. 29, pp. 1668-1675, 1993.
[40] G. Giacomelli and M. C. andF. T. Arecchi, "Instabilities in a semiconductor laser
with delayed optoelectronic feedback," Opt. Commun., vol. 74, pp. 97-101, 1989.
[41] S. Tang and J. M. Liu, "Chaotic pulsing and quasi-periodic route to chaos in a semiconductor
laser with delayed opto-electronic feedback," IEEE J. Quantum Electron.,
vol. 37, pp. 329-336, 2001.
[42] S. Tang and J. M. Liu, "Nonlinear dynamics of a semiconductor laser with delayed
negative optoelectronic feedback," IEEE J. Quantum Electron., vol. 39, pp. 562-568,
2003.
[43] S. Wieczoreka, T. B. Simpson, B. Krauskopf, and D. Lenstra, "Bifurcation transitions
in an optically injected diode laser: theory and experiment," Opt. Commun.,
vol. 215, pp. 125-134, 2003.
[44] S. Wieczorek, B. Krauskopf, T. B. Simpson, and D. Lenstra, \The dynamical complexity
of optically injected semiconductor lasers," Phys. Rep., vol. 416, pp. 1-128,
2005.
[45] I. Gatare, M. Sciamanna, M. Nizette, H. Thienpont, and K. Panajotov, "Mapping
of two-polarization-mode dynamics in vertical-cavity surface-emitting lasers with
optical injection," Phys. Rev. E, vol. 80, p. 026218, 2009.
[46] I. Fischer, G. H. M. van Tartwijk, A. M. Levine, W. Elsasser, E. Gobel, and
D. Lenstra, "Fast pulsing and chaotic itinerancy with a drift in the coherence collapse
of semiconductor lasers," Phys. Rev. Lett., vol. 76, pp. 220-223, 1996.
[47] N. Kikuchi, Y. Liu, and J. Ohtsubo, "Chaos control and noise suppression in
external-cavity semiconductor lasers," IEEE J. Quantum Electron., vol. 33, pp. 56-
65, 1997.
[48] S. Bauer, O. Brox, J. Kreissl, B. Sartorius, M. Radziunas, J. Sieber, H. J. Wunsche,
and F. Henneberger, "Nonlinear dynamics of semiconductor lasers with active optical
feedback," Phys. Rev. E, vol. 29, p. 016206, 2004.
[49] R. Lang and K. Kobayashi, "External optical feedback eects on semiconductor
injection laser properties," IEEE J. Quantum Electron., vol. 16, pp. 347-355, 1980.
[50] J. M. Liu and T. B. Simpson, "Four-wave mixing and optical modulation in a semiconductor
laser," IEEE J. Quantum Electron., vol. 30, pp. 957-965, 1994.
[51] Y. H. Liao, J. M. Liu, and F. Y. Lin, "Dynamical characteristics of a dual-beam
optically injected semiconductor laser," IEEE J. Sel. Top. Quant. Electron., vol. 19,
p. 1500606, 2013.
[52] M. Pochet, N. A. Naderi, V. Kovanis, and L. F. Lester, "Modeling the dynamic response
of an optically-injected nanostructure diode laser," IEEE J. Quantum Elec-
tron., vol. 47, pp. 827-833, 2011.
[53] A. Hurtado, I. D. Henning, M. J. Adams, and L. F. Lester, "Generation of tunable
millimeter-wave and THz signals with an optically injected quantum dot distributed
feedback laser," IEEE Photon. J., vol. 5, p. 5900107, 2013.
[54] S. Y. Ye and J. Ohtsubo, "Experimental investigation of stability enhancement in
semiconductor lasers with optical feedback," Opt. Rev., vol. 5, pp. 280-284, 1998.
[55] B. Dahmani, L. Hollberg, and R. Drullinger, "Frequency stabilization of semiconductor
lasers by resonant optical feedback," Opt. Lett., vol. 12, pp. 876-878, 1987.
[56] J. Ye, H. Li, and J. G. McInerney, "Period-doubling route to chaos in a semiconductor
laser with weak optical feedback," Phys. Rev. A, vol. 47, p. 2249, 1993.
[57] D. Lenstra, B. Verbeek, and A. D. Boef, "Coherence collapse in single-mode semiconductor
lasers due to optical feedback," IEEE J. Quantum Electron., vol. 21,
pp. 674-679, 1985.
[58] L. B. Mercer, "1/f noise eects on self-heterodyne linewidth measurement," IEEE
J. Lightw. Technol., vol. 9, pp. 485-493, 1991.
[59] H. Ludvigsen, M. Tossavainen, and M. Kaivola, "Laser linewidth measurement using
self-heterodyne detection with short delay," Opt. Commun., vol. 155, pp. 180-186,
1998.
[60] M. Han and A. Wang, "Analysis of a loss-compensated recirculating delayed selfheterodyne
interferometer for laser linewdith measurement," Appl. Phy. B, vol. 81,
pp. 53-58, 2008.
[61] X. P. Chen, M. Han, Y. Z. Zhu, B. Dong, and A. B. Wang, "Implementation of a
loss-compensated recirculating delayed self-heterodyne interferometer for ultranarrow
laser linewidth measurement," Appl. Opt., vol. 45, pp. 7712-7717, 2006.
[62] M. G. Taylor, "Phase estimation methods for optical coherent detection using digital
signal processing," J. Lightw. Technol., vol. 27, pp. 901-914, 2009.
[63] T. Sutili, R. C. Figueiredo, and E. Condorti, "Laser linewidth and phase noise
evaluation using heterodyne oine signal processing," J. Lightw. technol., vol. 34,
pp. 4933-4940, 2016.
[64] C. Y. Lin, F. Grillot, N. A. Naderi, Y. Li, and L. F. Lester, "rf linewidth reduction
in a quantum dot passively mode-locked laser subject to external optical feedback,"
Appl. Phys. Lett., vol. 96, p. 051118, 2010.
[65] A. Rohm, B. Lingnau, and K. Ludge, "Understanding Ground-State Quenching in
Quantum-Dot Lasers," IEEE J. Quantum Electron., vol. 51, p. 2000211, 2015.
[66] R. Lang and K. Kobayashi, "External optical feedback eects on semiconductor
injection laser properties," IEEE J. Quantum Electron., vol. 16, pp. 347 - 355, 1980.
[67] D. Lenstra, B. Verbeek, and A. Den Boef, "Coherence collapse in single-mode semiconductor
lasers due to optical feedback," IEEE J. Quantum Electron., vol. 21,
pp. 674 - 679, 1985.
[68] T. Heil, I. Fischer, W. Elsaer, B. Krauskopf, K. Green, and A. Gavrielides, "Delay
dynamics of semiconductor lasers with short external cavities: Bifurcation scenarios
and mechanisms," Phys. Rev. E, vol. 67, p. 066214, 2003.
[69] A. K. D. Bosco, K. Kanno, A. Uchida, M. Sciamanna, T. Harayama, and
K. Yoshimura, "Cycles of self-pulsations in a photonic integrated circuit," Phys.
Rev. E, vol. 92, p. 062905, 2015.
[70] R. L. Sellin, C. Ribbat, M. Grundmann, N. N. Ledentsov, and D. Bimberg, "Close-toideal
device characteristics of high-power InGaAs/GaAs quantum dot lasers," Appl.
Phys. Lett, vol. 78, p. 1207, 2001.
[71] D. Arsenijevic and D. Bimberg, "Quantum-dot lasers for 35 Gbit/s pulse-amplitude
modulation and 160 Gbit/s dierential quadrature phase-shift keying," Proc. of
SPIE, vol. 9892, p. 98920, 2016.
[72] D. Gready, G. Eisenstein, M. Gioannini, I. Montrosset, D. Arsenijevic, H. Schmeckebier,
M. Stubenrauch, and D. Bimberg, "On the relationship between small and large
signal modulation capabilities in highly nonlinear quantum dot lasers," Appl. Phys.
Lett., vol. 102, p. 101107, 2013.
[73] B. J. Stevens, D. T. D. Childs, H. Shahid, and R. A. Hogg, "Direct modulation of
excited state quantum dot lasers," Appl. Phys. Lett., vol. 95, p. 061101, 2009.
[74] M. Ishida, N. Hatori, T. Akuyama, K. Otsubo, Y. Nakata, H. Ebe, M. Sygawara,
and Y. Arakawa, "Photon lifetime dependence of modulation eciency and K factor
in 1.3 m self-assembled InAs/GaAs quantum-dot lassers: Impact of capture time
and maximum modal gain on modulation bandwidth," Appl. Phys. Lett., vol. 85,
p. 4145, 2004.
[75] F. Grillot, B. Dagens, J. G. Provost, H. Su, and L. F. Lester, "Gain compression and
above-threshold linewidth enhancement factor in 1.3 m InAs-GaAs quantum-dot
lasers," IEEE J. Quantum Electron., vol. 44, pp. 946 - 951, 2008.
[76] F. I. Zubov, M. V. Maximov, E. I. Moiseev, A. V. Savelyev, Y. M. Shernyakov, D. A.
Livshits, N. V. Kryzhanovskaya, and A. E. Zhukov, "Observation of zero linewidth
enhancement factor at excited state band in quantum dot laser," Electron. Lett.,
vol. 51, p. 1686, 2015.
[77] D. O'Brien, S. Hegarty, G. Huyet, J. McInerney, T. Kettler, M. Laemmlin, D. Bimberg,
V. Ustinov, A. Zhukov, S. Mikhrin, and A. Kovsh, "Feedback sensitivity of
1.3 m InAs/GaAs quantum dot lasers," Electron. Lett., vol. 39, p. 1819, 2003.
[78] D. O'Brien, S. P. Hegarty, G. Huyet, and A. V. Uskov, "Sensitivity of quantum-dot
semiconductor lasers to optical feedback," Opt. Lett., vol. 29, p. 1072, 2004.
[79] G. Huyet, D. O0Brien, S. P. Hegarty, J. G. McInerney, A. V. Uskov, D. Bimberg,
C. Ribbat, V. M. Ustinov, A. E. Zhukov, S. S. Mikhrin, A. R. Kovsh, J. K. White, K. Hinzer, and A. J. SpringThorpe, "Quantum dot semiconductor lasers with optical
feedback," Phys. Stat. Sol. (a), vol. 201, pp. 345-352, 2004.
[80] E. A. Viktorov, P. Mandel, I. O0Driscoll, O. Carroll, G. Huyet, J. Houlihan, and
Y. Tanguy, "Low-frequency
uctuations in two-state quantum dot lasers," Opt. Lett.,
vol. 31, pp. 2302 - 2304, 2006.
[81] M. Virte, S. Breuer, M. Sciamanna, and K. Panajotov, "Switching between ground
and excited states by optical feedback in a quantum dot laser diode," Appl. Phys.
Lett., vol. 105, p. 121109, 2014.
[82] F. Grillot, C. Y. Lin, N. A. Naderi, M. Pochet, and L. F. Lester, "Optical feedback
instabilities in a monolithic InAs/GaAs quantum dot passively mode-locked laser,"
Appl. Phys. Lett., vol. 94, p. 153503, 2009.
[83] D. Arsenijevic, M. Kleinert, and D. Bimberg, "Breakthroughs in photonics 2013:
Passive mode-locking of quantum-dot lasers," IEEE Photon. J., vol. 6, p. 700306,
2014.
[84] A. R. Kovsh, N. A. Maleev, A. E. Zhukov, S. S. Mikhrin, A. P. Vasil'ev, E. A.
Semenova, Y. M. Shernyakov, M. V. Maximov, D. A. Livshits, V. M. Ustinov, N. N.
Ledentsov, D. Bimberg, and Z. I. Alferov, "InAs/InGaAs/GaAs quantum dot lasers
of 1.3 m range with enhanced optical gain," J. Cryst. Growth, vol. 251, pp. 729-736,
2003.
[85] F. Y. Lin and J. M. Liu, "Harmonic frequency locking in a semiconductor laser with
delayed negative optoelectronic feedback," Appl. Phys. Lett., vol. 81, p. 3128, 2002.
[86] J. Ohtsubo, Semiconductor Lasers: Dynamics of Semiconductor Lasers with Optical
Feedback. Springer Series in Optical Sciences, Springer Cham, 2017.
[87] F. Y. Lin and J. M. Liu, "Chaotic lidar," IEEE J. Sel. Topics Quantum Electron.,
vol. 10, pp. 991 - 997, 2004.
[88] F. Y. Lin and J. M. Liu, "Chaotic radar using nonlinear laser dynamics," J. Quantum
Electron., vol. 40, pp. 815 - 820, 2004.
[89] R. Takahashi, Y. Akizawa, A. Uchida, T. Harayama, K. Tsuzuki, S. Sunada, K. Arai,
K. Yoshimura, and P. Davis, "Fast physical random bit generation with chaotic
semiconductor lasers," Opt. Express, vol. 22, pp. 11727 - 11740, 2014.
[90] I. Reidler, Y. Aviad, M. Rosenbluh, and I. Kanter, "Ultrahigh-speed random number
generation based on a chaotic semiconductor laser," Phys. Rev. Lett., vol. 103,
p. 024102, 2009.
[91] L. C. Lin, S. H. Liu, and F. Y. Lin, "Stability of period-one (P1) oscillations generated
by semiconductor lasers subject to optical injection or optical feedback," Opt.
Express, vol. 25, pp. 25523 - 25532, 2017.
[92] M. Stubenrauch, G. Stracke, D. Arsenijevic, A. Strittmatter, and D. Bimberg, "15
Gb/s index-coupled distributed-feedback lasers based on 1.3 m InGaAs quantum
dots," Appl. Phys. Lett., vol. 105, p. 011103, 2014.
[93] J. P. Zhuang and S. C. Chan, "Tunable photonic microwave generation using optically
injected semiconductor laser dynamics with optical feedback stabilization,"
Opt. Lett., vol. 38, pp. 344-346, 2013.