簡易檢索 / 詳目顯示

研究生: 黃如翰
Zu-Han Huang
論文名稱: 神經元樹突小刺中微管蛋白之消長動態控制與其發育中形態變化之研究
Studying the properties of dendritic spines in neurons: dynamic control of tubulin localization and developmental changes
指導教授: 張兗君
Yen-Chung Chang
口試委員:
學位類別: 博士
Doctor
系所名稱: 生命科學暨醫學院 - 生命科學系
Department of Life Sciences
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 93
中文關鍵詞: 微管蛋白樹突小刺發育
外文關鍵詞: tubulin, dendritic spine, development
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Dendritic spines are small protrusions that extend from the dendrites of neurons. Most excitatory synapses in mammals are made on dendritic spines. As the dendritic spines hold the key to neuronal circuitry, their structure, composition, function, development, and plasticity are of great interest. In the first part of this dissertation, I used cultured rat hippocampal neurons as a model system to study the distribution of tubulins and microtubules in dendritic spines. Our results indicate the presence of tubulin dimers, but not microtubules in dendritic spines. The presence of tubulin dimers in dendritic spines does not seem to be due to passive diffusion, but requires a dynamic microfilament cytoskeleton. Furthermore, the localization of tubulin dimers in dendritic spines is sensitive to cold treatment, and calcium channels appear to participate in the process that leads to the cold-induced disappearance or retraction of tubulin dimers from dendritic spines. In the second part of this dissertation, I used fluorescence labeling techniques to study the dendritic spines on the processes of cultured rat cortical neurons at different stages during their in vitro development. I report the change in the densities of protrusions on processes, the change in the shapes thereof, and the change in the proportion of protrusions associated with the accumulation of a presynaptic marker, synaptophysin, in cultured cortical neurons during their in vitro development. Furthermore, large numbers of dendritic spine-like protrusions that were not associated with synapses or other processes were observed. The implications of these latter observations for the mechanisms that underlie the formation of dendritic spines in cortical neurons were also discussed.


    Abstract Table of Contents 1. Introduction…………………………………….…1 2. Material and Methods………....……………..9 3. Results……………………………………………29 4. Discussion………………………..………………42 5. Reference…………………………………………52 6. Figures……………………………………………67

    Baloyannis, S.J., Costa, V. and Deretzi, G. Intraventricular administration of substance P induces unattached Purkinje cell dendritic spines in rats. Int. J. Neurosci. 62:251-262, 1992.

    Banker, G., Churchill. L., and Cotman C.W. Proteins of the postsynaptic density. J. Cell Biol. 63:456–465, 1974.

    Bliss, T.V.P. and Lomo, T. Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J. Physiol. 232:331-356,1973.

    Bliss, T.V.P. and Collingridge, G.L. A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361:31-39, 1993.

    Boyer, C., Schikorski, T. and Stevens, C.F. Comparison of hippocampal dendritic spines in culture and in brain. J. Neurosci. 18:5294-5300, 1998.

    Bravin, M., Morando, L., Vercelli, A., Rossi, F. and Piergiorgio, S. Control of spine formation by electrical activity in the adult rat cerebellum. Proc. Natl. Acad. Sci. USA 96:1704-1709, 1999.

    Caceres, A., Binder, L.I., Payne, M.R., Bender, P., Rebhun, L. and Steward, O. Differential subcellular localization of tubulin and the microtubule-associated protein MAP2 in brain tissue as revealed by immunocytochemistry with monoclonal hybridoma antibodies. J. Neurosci. 4:394-410, 1984.

    Capani, F., Martone, M.E., Deerinck, T.J. and Ellisman, M.H. Selective localization of high concentrations of F-actin in subpopulations of dendritic spines in rat central nervous system: a three-dimensional electron microscopic study. J. Comp. Neurol. 435:156–170, 2001.

    Chang, F.L. and Greenough, W.T. Transient and enduring morphological correlates of synaptic activity and efficacy change in the rat hippocampal slice. Brain Res. 309:35–46, 1984.

    Chou, Y.C. Corticosterone exacerbrates cyanide-induced cell death in hippocampal cultures: roles of astrocytes. Neuroschem. Int. 32:219-226, 1998.
    Chicurel, M.E. and Harris, K.M. Three-dimensional analysis of the structure and composition of CA3 branched dendritic spines and their synaptic relationships with mossy fiber boutons in the rat hippocampus. J. Comp. Neurol. 325:169–182, 1992.

    Dailey, M.E. and Smith S.J. The dynamics of dendritic structure in developing hippocampal slices. J. Neurosci. 16:2983-2994, 1996.

    Deller, T., Merten, T., Roth, S.U., Mundel, P. and Frotscher, M. Actin associated protein synaptopodin in the rat hippocampal formation: localization in the spine neck and close association with the spine apparatus of principal neurons. J. Comp. Neurol. 418:164–181, 2000.

    Dunaevsky, A., Tashiro, A., Majewska, A., Mason, C. and Yuste, R. Developmental regulation of spine motility in the mammalian central nervous system. Proc. Natl. Acad. Sci. USA 96:13438-13443, 1999.

    Dunaevsky, A., Blazeki, R., Yuste, R. and Mason, C. Spine motility with synaptic contact. Nat. Neurosci. 4:685-686, 2001.

    Fiala, J.C., Feinberg, M., Popov, V. and Harris, K. Synaptogenesis via dendrtic filopodia in developing hippocampal area CA1. J. Neurosci. 18:8900-8911, 1998.

    Fiala, J.C., Spacek, J., Harris, K.M. Dendritic spine pathology: cause or consequence of neurological disorders? Brain Res. Rev. 39:29–54, 2002.

    Fiala, J.C., Kirov, S.A., Feinberg, M.D., Petrak, L.J., George, P., Goddard, C.A. and Harris, K.M. Timing of neuronal and glial ultrastructure disruption during brain slice preparation and recovery in vitro. J. Comp. Neurol. 465:90-103, 2003.

    Fifkova, E. and Delay, R.J. Cytoplasmic actin in neuronal processes as a possible mediator of synaptic plasticity. J. Cell Biol. 95:345–350,1982.

    Fischer, M., Kaech, S., Knutti, D. and Matus, A. Rapid actin-based plasticity in dendritic spines. Neuron 20:847-854, 1998.

    Gray, E.G., Burgoyne, R.D., Westrum, L.E., Cumming, R. and Barron J. The enigma of microtubule coils in brain synaptosomes. Pro.c R. Soc. Lond B Bio.l Sci. 216:385-96, 1982.

    Gray, E.G., Westrum, L.E., Burgoyne, R.D. and Barron J. Synaptic organisation and neuron microtubule distribution. Cell Tissue Res. 226:579-88, 1982.

    Gustafsson, B. and Wigstrom, H. Physiological mechanisms underlying long-term potentiation. Trends Neurosci. 11:156-162, 1988.

    Halpain, S., Hipolito, A. and Saffer, L. Regulation of F-actin stability in dendritic spines by glutamate receptors and calcineurin. J. Neurosci. 18:9835-9844, 1998.

    Harris, K.M. and Kater, S.B. Dendrtic spines: cellular specializations imparting both stability and flexibility to synaptic function. Ann. Rev. Neurosci. 17:341-371, 1994.

    Harris, K.M. Structure, development, and plasticity of dendritic spines. Curr. Opin. Neurobiol. 9:343-348, 1999.

    Harris, K.M., Jensen, F.E. and Tsao, B. Three-dimensional structure of dendritic spines and synapses in rat hippocampus (CA1) at postnatal day 15 and adult ages: implications for the maturation of synaptic physiology and long-term potentiation. J. Neurosci. 12:2685–2705, 1992.

    Hering, H. and Sheng, M. Dendritic spines:structure, dynamics and regulation Nat. Rev. Neurosci. 2:880-888, 2001.

    Huang, Z.H., Wu, H.J., Yeh, C.C., Chou, Y.C. and Chang, C.C. Dendritic spines of developing rat cortical neurons in culture. Chinese J. Physiol. 49:39-45, 2006.

    Irwin, S.A., Galvez, R. and Greenough, W.T. Dendritic spine structural anomalies in fragile-X mental retardation syndrome. Cereb. Cortex 10:1038–1044, 2000.

    Jordan, B.A., Fernholz, B.D., Boussac, M., Xu, C., Grigorean, G., Ziff, E.B. and Neubert, T.A. Identification and verication of novel rodent postsynaptic density proteins. Mol. Cellular. Proteom. 3.9: 857-871, 2004.

    Kaufmann, W.E. and Moser, H.W. Dendritic anomalies in disorders associated with mental retardation. Cereb. Cortex 10:981–991, 2000.

    Kelly, P.T. and Cotman, C.W. Synaptic proteins. Characterization of tubulin and actin and identification of a distinct postsynaptic density polypeptide. J. Cell Biol. 79:173-83, 1978.

    Kennedy, M.B. The postsynaptic density at glutamatergic synapses. Trends in Neurosci. 20:264-268, 1997.

    Koch, C. and Zador, A. The function of dendritic spines; devices subserving biochemical rather than electrical compartmentalization. J. Neurosci. 13:413-422, 1993.

    Korkotian, E. and Segal, M. Spike-associated fast contraction of dendritic spines in cultured hippocampal neurons. Neuron 30:751-758, 2001.

    Landis, D.M. and Reese, T.S. Cytoplasmic organization in cerebellar dendritic spines. J. Cell Biol. 97:1169–1178, 1983.

    Lendvai, B., Stern, E.A., Chen, B. and Svoboda, K. Experience-dependent plasticity of dendritic spines in the developing rat barrel cortex in vivo. Nature 404:876-881, 2000.

    Lin, Y.C., Huang, Z.H., Jan, I.S., Yeh, C.C., Wu, H.J., Chou, Y.C. and Chang, Y.C. Development of excitatory synapses in cultured neurons dissociated from the cortices of rat embryos and rat pups at birth. J. Neurosci. Res. 67:484–493, 2002.

    Li, K.W., Hornshaw, M.P., Van Der Schors, R.C., Watson, R., Tate, S., Casetta, B., Jimenez, C.R., Gouwenberg, Y., Gundelfinger, E.D., Smalla, K.H. and Smit, A.B. Proteomics analysis of rat brain postsynaptic density. Implications of the diverse protein functional groups for the integration of synaptic physiology. J. Biol Chem. 279:987-1002, 2004.

    Larkman, A.U. and Jack, J.J.B. Synaptic plasticity: hippocampal LTP. Curr. Opin. Neurobiol. 5:324-334, 1995.
    Lo, L.P., Liu, S.H. and Chang, C.C. Assembling microtubules diintegrate the postsynaptic density in vitro. Cell Motility and Cytoskeleton. 2006.

    Madison, D.V., Malenka, R.C. and Nicoll, R.A. Mechanisms underlying long-term potentiation of synaptic transmission. Annu. Rev. Neurosci. 14:379-397, 1991.

    Marrs, G.S., Green, S.H. and Dailey, M.E. Rapid formation and remodeling of postsynaptic densities in developing dendrites. Nat. Neurosci. 4:1006-1012, 2001.

    Matus, A., Ackermann, M., Pehling, G., Byers, H.R. and Fujiwara, K. High actin concentrations in brain dendritic spines and postsynaptic densities. Proc. Natl. Acad. Sci. USA 79:7590–7594, 1982.

    Matus, A.I. and Jones-Taff, D.H. Morphology and molecular composition of isolated postsynaptic junctional structures. Proc. R. Soc. Lond. 203: 135–151, 1978.

    Nicoll, R.A., Kauer, J. A. and Malenka, R.C. The current excitement in long-term potentiation. Neuron 1:97-103, 1988.

    Nicoll, R.A. and Malenka, R.C. Contrasting properties of two forms of long-term potentiation in the hippocampus. Nature 377:115-128, 1995.
    Nimchinsky, E.A., Sabatini, B.L., Svoboda, K. Structure and function of dendritic spines. Annu Rev Physiol 64:313–353, 2002.

    Ouyang, Y., Wong, M., Capani, F., Rensing, N., Lee, C.S., Liu, Q., Neusch, C., Martone, M.E., Wu, J.Y., Yamada, K., Ellisman, M.H. and Choi, D.W. Transient decrease in F-actin may be necessary for translocation of proteins into dendritic spines. Eur. J. Neurosci. 22: 2995–3005, 2005.

    Papa, M., Bundiman, M.C., Greenberger, V. and Segal, M. Morphological analysis of dendritic spine development in primary cultures of hippocampal neurons. J. Neurosci. 15:1-11, 1995.

    Peters, A., Palay, S.L. and Webster, H.D. In: The fine structure of the nervous system, New York, Oxford and Toronto, Oxford University Press, 1991.

    Peters, A. and Kaiserman-Abramof, I.R. The small pyramidal neuron of the rat cerebral cortex. The perikaryon, dendrites and spines. Am. J. Anat. 127:321–355, 1970.

    Ramon y Cajal, S. Estructural de los centros nerviosos de la saves. Rev. Trim.Histol. Norm. Pat. 1:1–10, 1888.

    Ryu, J., Liu, L., Wong, T.P., Wu, D.C., Burette, A., Weinberg, R., Wang, Y.T. and Sheng, M. A critical role for myosin IIB in dendritic spine morphology and synaptic function. Neuron 49:175-182, 2006.

    Saito, Y., Murakami, F., Song, W.J., Okawa, K., Shimono, K. and Katsumaru, H. Developing corticorubral axons of the cat form synapses on filopodial dendritic protrusions. Neurosci. Lett. 147:81–84, 1992.

    Saito, Y., Song, W.J. and Murakami, F. Preferential termination of corticorubral axons on spine-like dendritic protrusions in developing cat. J. Neurosci. 17:8792–8803, 1997.

    Sasaki, Y., Sasaki, Y., Kanno, K. and Hidaka, H. Disorganization by calcium antagonists of actin microfilament in aortic smooth muscle cells. Am J Physiol Cell Physiol. 253:71-78, 1987.

    Segal, M., Korkotian, E. and Murphy, D.D. Dendritic spine formation and pruning: common cellular mechanisms. Trends Neurosci. 23:53-57, 2000.

    Segev, I. and Rall, W. Excitable dendrites and spines: earlier theoretical insights elucidate recent direct observations. Trends Neurosci. 21:453-460, 1998.

    Shepherd, G.M. The dendritic spines: a multifunctional integrative unit. J. Neurophysio. 75:2197-2210, 1996.

    Sorra, K.E. and Harris, K.M. Overview on the structure,composition, function, development, and plasticity of hippocampal dendritic spines. Hippocampus 10:501–511, 2000.

    Sotelo, C. Cerebellar spinogenesis: what can we learn from mutant mice. J. Exp. Biol. 153:225-249, 1990.

    Sternberger, L.A. and Sternberger, N.H. Monoclonal antibodies distinguish phosphorylated and non-phosphorylated forms of neurofilaments in situ. Proc. Natl. Acad. Sci. USA 80:6126-6130, 1983.

    Therien, H.M. and Mushynski, W.E. Isolation of synaptic junctional complexes of high structural integrity from rat brain. J. Cell Biol. 71:807–822, 1976.

    Tyan, S.H., Sue, T.Y., Hon, Y.S., Gean, P.W. and Chang, Y.C. A novel NMDA receptor antagonist protects against N-methyl-D-aspartate-and glutamate-induced neurotoxicity in the goldfish retina. Eur. J. Pharmacol. 321:171-179, 1997.

    Teyler, T.J. and DiScenna, P. Long-term potentiation. Annu Rev Neurosci. 10:131-161, 1987.

    Ullian, E.M., Sapperstein, S.K., Chrisopherson, K.S. and Barres, B.A. Control of synapse number by glia. Science 291:657-61, 2001.

    van Rossum, D., Kuhse, J. and Betz, H. Dynamic interaction between soluble tubulin and C-terminal domains of N-methyl-D-aspartate receptor subunits. J. Neurochem. 72:962-73, 1999.

    Walikonis, R.S., Jensen, O.N., Mann, M., Provance, D.W. Jr, Mercer, J.A. and Kennedy, M.B. Identification of proteins in the postsynaptic density fraction by mass spectrometry. J. Neurosci. 20:4069-80, 2000.

    Walsh, M.J. and Kuruc, N. The postsynaptic density: constituent and associated proteins characterized by electrophoresis, immunoblotting, and peptide sequencing. J.Neurochem. 59:667-78, 1992.

    Walters, B.B. and Matus, A.I. Tubulin in postynaptic junctional lattice. Nature. 5526:496-498, 1975.

    Westrum, L.E. and Gray, E.G. Microtubules and membrane specializations. Brain Res. 105:547-50, 1976.

    Westrum, L.E. and Gray, E.G. Microtubules associated with postsynaptic 'thickenings'. J. Neurocytol. 6:505-18, 1977.

    Westrum, L.E., Jones, D.H., Gray, E.G. and Barron, J. Microtubules, dendritic spines and spine appratuses. Cell Tissue Res. 208:171-81, 1980.

    White, E.L., Weinfeld, L., and Lev, D.L. A survey of morphogenesis during the early postnatal period in PMBSF barrels of mouse SmI cortex with emphasis on barrel D4. Somatosens. Motil. Res. 14:34–55, 1997.

    Wise, S.P., Fleshman, J.W., Jr., and Jones, E.G. Maturation of pyramidal cell form in relation to developing afferent and efferent connections of rat somatic sensory cortex. Neuroscience 4:1275–1297,1979.

    Wyszynski, M., Lin, J., Rao, A., Nigh, E., Beggs, A.H., Craig, A.M. and Sheng, M. Competitive binding of alpha-actinin and calmodulin to the NMDA receptor. Nature 385:439–442, 1997.

    Xia, Z., Dudek, H., Miranti, C.K. and Greenberg, M.E. Calcium influx via the NMDA receptors induces immediate early gene transcription by a MAP kinase/EKR-dependent mechanism. J. Neurosci. 16:5425-5436, 1996.

    Zhang, W. and Benson, D.L. Development and molecular organization of dendritic spines and their synapses. Hippocampus 10:512-526, 2000.

    Ziv, N.E. and Smith, S.J. Evidence for a role of dendritic filopodia in synaptogenesis and spine formation. Neuron 17:91-102, 1996.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE