研究生: |
李秉樺 Lee, Ping-Hua |
---|---|
論文名稱: |
蝴蝶之翼形與撲翼模式對飛行之影響研究 The effects of flapping-wing patterns and the wing-shape of butterflies on flight |
指導教授: |
葉孟考
Yeh, Meng-Kao 楊鏡堂 Yang, Jing-Tang |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 中文 |
論文頁數: | 85 |
中文關鍵詞: | 蝴蝶 、流場可視化 、翼形 、拍撲機構 |
外文關鍵詞: | butterfly, flow visualization, wing-shape, flapping mechanism |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
大自然界的各種飛行生物,昆蟲、鳥類、哺乳類等,均選擇了撲翼的方式來飛行,這些飛行生物為了產生更大的推進力量與更好的操控性,共同特點是具有低雷諾數、高的表面積/體積比以及飛行動作複雜,而撲翼飛行比起傳統固定翼飛行更能適合這種飛行方式。本研究的主旨在於深入瞭解蝴蝶之飛行動作,歸納蝴蝶在不同飛行模式下的撲翼動作,對自然飛行(free flight)作更深入的分析,希望可以證實創新的升力/推進力理論。歸納出撲翼攻角(angle of attack)、撲翼頻率(wing beat frequency)、撲翼幅度(wing beat amplitude)等相關參數與升力及推進力之間的關係,同時也探討其動作與飛行操控性之關係,分析蝴蝶飛行動作以及飛行時產生的流場。透過仿生拍撲機構的實驗,進一步討論展弦比(aspect ratio)、雷諾數(Re)、史卓赫數(St)、尾凸(tail)、翼縫(wing gap)對於飛行的影響,得到往復雷諾數與轉動雷諾數有正比的關係,展弦比對轉動雷諾數沒有太大影響;史卓赫數接近最佳效率時均為小展弦比,證實小展弦比的蝴蝶適合拍撲飛行,大展弦比的蝴蝶適合滑翔;發現蝴蝶在飛行時也使用間隙效應的高升力機制,利用自行設計的機構加以驗證;在翼片加入尾突結構會使轉動雷諾數增大,原因為尾突可以影響翼片所打出的渦流環中心射流的角度,增加有效推進力。
Aono, H., Liang, F., and Liu, H. Near- and far-field aerodynamics in insect hovering flight: an integrated computational study The Journal of Experimental Biology. 211, 239-257 (2008)
Bomphrey, R. J., Lawson, N. J., Taylor, G. K., and Thomas, A. L. R. Application of digital particle image velocimetry to insect aerodynamics: measurement of the leading-edge vortex and near wake of a Hawkmoth. Experiments in Fluids. 40 546–554 (2006)
Brodsky, A. K. Vortex formation in the tethered flight of the peacock butterfly inachis 10 L. (lepidoptera, nymphalidae) and some aspects of insect flight evolution. The Journal of Experimental Biology. 161, 77-95 (1991)
Cox, A., Monopoli, D. J., Goldfarb, M. and Garcia, E. Development of piezoelectrically actuated micro-aerial vehicles. In SPIE Microrobotics and Microassembly, September, 101–108 (1999)
Dickson, M. H. The effects of wing rotation on unsteady aerodynamic performance at low Reynolds numbers. The Journal of Experimental Biology. 192, 179–206 (1994)
Dudley, R., and Ellington, C. P. Mechanics of forward flight in bumblebees. I. Kinematics and morphology. The Journal of Experimental Biology. 148, 19-52. (1990)
Dudley, R., and Ellington, C. P. Mechanics of forward flight in bumblebees. II. Quasi-steady lift and power requirements. The Journal of Experimental Biology. 148, 53-88. (1990)
Ellington, C. P., The aerodynamics of hovering insect flight. III. Kinematics, Phil. Trans. R. Soc. Lond. B, 305, 41–78 (1984)
Ellington, C. P., van den Berg, C., Willmott, A. P., and Thomas A. L. R. Leading-edge vortices in insect flight. Nature 384 626–630 (1996)
Michelson, R. C., Davis, J. L., Rudolph, A., and Ayers, J. Neurotechnology for Biomimetic robots. The MIT Press, Cambridge, USA. 481–509 (2002)
Newman, B. G., Savage, S. B. and Schouella, D. Model tests on a wing section of an Aeshna dragonfly. In Scale Effects in Animal Locomotion. London: Academic Press. 445-477. (1977)
Okamoto, M., Sunada, S., Tokutake, H. Stability analysis of gliding flight of a swallowtail butterfly Papilio xuthus. Journal of Theoretical Biology. 257 191–202 (2009)
Pornsin-sirirak, T. N., Lee, S. W., Nassef, H., Grasmeyer, J., Tai, Y. C.,
Ho, C. M., and Keennon, M. MEMS wing technology for a battery-powered ornithopter. The 13th IEEE Annual International Conference on MEMS, 709-804 (2000)
Pornisn-Sirirak, T. N., Tai, Y. C., Nassef, H., and Ho, C. M. Titanium-alloy MEMS wing technology for a micro aerial vehicle application. Journal of sensors and actuators A, 89, 95–103 (2001)
Sane, S. P. The aerodynamics of insect flight. The Journal of Experimental Biology. 206, 4191-4208 (2003)
Smith, A. M. O. High-lift aerodynamics. Jourmal of Aircraft. 12 501-530 (1975)
Snodgrass. Principle of insect morphology. Cornell university press. (1993)
SRI International. Artificial muscle transducers., http://www.sri.com/esd/automation/actuators.html. retrieved on 2008/3/5
Stavenga, D. G., Giraldo, M. A., and Hoenders, B. J. Reflectance and transmittance of light scattering scales stacked on the wings of pierid butterflies. Opt. Express 14, 4880. (2006)
Steltz, E., Seeman, Avadhanula, M. S., and Fearing, R.S. Power electronics design choice for piezoelectric microrobots. Int. conf. on Intelligent Robots and Systems, Beijing, China Oct, 9-13 (2006).
Steltz, E., Wood, R. J., Avadhanula, M. S., and Fearing, R.S. Characterization of the micromechanical flying insect by optical position sensing. IEEE Int. Conf. on Robotics and Automation, Barcelona, April (2005)
Taylor, G. K., Nudds, R. L., and Thomas, A. L. R., Flying and swimming animals cruise at a strouhal number tuned for high power efficiency. Nature. 425 707–711 (2003)
Thomas, A. M. and John, T. B., On size and life, New York, ISBN 0-7167-5000-7 (1983)
Triantafyllou, G. S., Triantafyllou, M. S., and Grosenbaugh, M. A. Optimal thrust development in oscillating foils with application to fish propulsion. J. Fluids Struct. 7 205–224 (1993)
U.S. Department of Defense, http://www.defenselink.mil/specials/uav2002/, retrieved on 2008/12/10
van den Berg, C. and Ellington, C. P. The three-dimensional leading edge vortex of a ‘hovering’ model hawkmoth. Phil. Trans. R. Soc. Lond. B 352, 329-3 40. (1997)
Vogel, S. Flight in Drosophila. III. aerodynamic characteristics of fly wings and wing models. The Journal of Experimental Biology. 46, 431-443. (1967)
Zeng R., Aerodynamic characteristics of flapping-wing MAV simulating bird flight (2004)
蝴蝶生態面面觀, http://turing.csie.ntu.edu.tw/ncnudlm/, retrieved on 2008/7/4 國立暨南國際大學, 國立自然科學博物館
朱耀沂. 昆蟲雜貨店. 玉山社出版事業, 59-64 (2004)
盧耽, 圖解昆蟲學, 商周出版. 79-85 (2008)
張書忱, 昆蟲形態學, 黎明文化. Ch9-10 (1979)
優質素材8 蝴蝶標本. 華彩軟體