簡易檢索 / 詳目顯示

研究生: 傅芊瑜
Fu, Chien Yu
論文名稱: 利用微流體技術建立三微細胞團培養系統探討細胞分化之研究與癌症藥物測試
Developments of Three-dimensional Multicellular Spheroid Culture Systems for Cell Differentiation Studies and Anti-cancer Drug Testing Using Microfluidic Techniques
指導教授: 張晃猷
Chang, Hwan You
口試委員: 劉承賢
Liu, Cheng Hsien
徐琅
Hsu, Long
陳盈潔
Chen, Ying Chieh
陳致真
Chen, Chih chen
學位類別: 博士
Doctor
系所名稱: 生命科學暨醫學院 - 分子醫學研究所
Institute of Molecular Medicine
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 61
中文關鍵詞: 多細胞團塊微流體三微細胞培養藥物篩選
外文關鍵詞: multicellular spheroids, microfluidic, 3D cell culture, drug-screening
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 多細胞球體由於其結構與型態和真實的組織極其相似,經常被選擇作為體外三維細胞培養模式。此外,因提供適當的細胞與細胞及細胞與細胞基質間交互作用,在維持體外培養之初代細胞的特定功能及調節幹細胞分化潛力上亦有顯著幫助,目前已廣泛應用在基礎生物及藥物篩選之相關實驗。因而,在醫藥生物研究中,建立合適之細胞球體模式並有效率的進行培養與觀察方法成為球體技術持續發展上重要的一環。近十幾年來發展的微流體技術具備精準操控流體的能力,加上與其他工程技術結合製成的實驗室晶片,能夠在體外建立接近體內的生物微環境來進行細胞培養及實驗分析,藉此使科學家們獲取更可信的研究結果。在本論文中,便針對多細胞球體相關的研究及當前發展遭遇的問題進行微流體晶片系統的設計開發與測試。首先,我們在微流體系統中設計特定微結構進行對單一個多細胞球體的不同部位進行不同的細胞分化,培養由多種類的細胞形成的多細胞球體。這類異種種類細胞形成之多細胞球體能作為更複雜的三維模式以研究多種類細胞間的交互作用亦或是應用在組織工程領域。接著,我們建立以微流體晶片培養多細胞球體進行抗癌藥物篩選的平台,藉著微流體晶片內製作之U型光敏水膠微結構進行細胞捕捉、多細胞球體形成與培養以及處理抗癌藥物後的細胞毒殺測試。隨著三維多細胞球體在基礎研究與藥物發展上的應用與重要性逐漸提升,我們相信結合微流體技術進行多細胞球體之培養與分析將帶給此領域更多研究過程的便利性, 更接近細胞於生物體內的行為, 以及發展未來快速高通量藥物篩選及自動化實驗的想法。


    Because of their structural and functional resemblance to real tissues, multicellular spheroids have been widely used as 3-D tissue models for basic cell biology studies and cell-based drug screenings. Spheroids have also been implicated as a powerful method to maintain or enhance cellular functions in primary cells and regulating the potency of stem cells. Recent advancement of microfluidic technology has provided scientists many capabilities including continuous dynamic perfusion and automatic fluidic control in performing cell culture. These functions are beneficial for growing cells in a long-term culture and their subsequent treatment and analysis. In this thesis, we first designed microfluidic systems to control cell differentiation at a specific site on a single spheroid. These strategies could controllably generate heterospheroids with a desired arrangement of multiple cell types, which meets the demand of a more complex MCS-based model for tissue surrogates for application in tissue engineering and cell-cell interaction studies. Furthermore, for the establishment of a well-manipulated process for spheroid productions and spheroid-based tests, we also generated a microfluidic device integrated with U-shaped PEG hydrogel microstructures that allow cell trapping, spheroid formation through self-assembly, and long-term culture of the spheroids. Heterospheroids generations and tests of anti-cancer drug on tumor spheroids have been accomplished and are potentially for automation through this microfluidic system. To summarize, we believe that applying the microfluidic techniques for establishment of desired 3D cell culture systems is beneficial for fundamental biological studies, drug-screening and other pharmaceutical application in the future.

    Abstract (English) ............................................................................................................ I Abstract (Chinese) ............................................................................................................ II Acknowledgement ........................................................................................................... IV Table of contents ............................................................................................................. V Table of figures ................................................................................................................ VII Abbreviations ................................................................................................................... VIII Chapter 1: General Introduction 1.1 The significance and current researches of 3-dimentional cell culture ..................... 2 1.2 Multicellular spheroids as a simple 3-D model: The recent advances ...................... 3 1.3 Hydrogels and the photopolymerization technique for 3-dimensional cell culture .. 5 1.4 Microfluidic technology for cellular microenvironment engineering ....................... 6 1.5 Conclusion ................................................................................................................. 6 Chapter 2: Site-directed cell differentiation on a single multicellular spheroid 2.1 Introduction ............................................................................................................... 9 2.2 Materials and methods .............................................................................................. 13 2.2.1 Materials and regents ...................................................................................... 13 2.2.2 Cell culture ...................................................................................................... 13 2.2.3 Spheroid generation using the hanging drop method ..................................... 13 2.2.4 Site-directed cell differentiation using photosensitive hydrogels ................... 15 2.2.5 Fabrication of microfluidic chips .................................................................... 17 2.2.6 Spheroids capturing and the dual-environments establishment ...................... 19 2.2.7 Imagine acquisition and analysis .................................................................... 19 2.3 Results and discussion .............................................................................................. 20 2.3.1 Establishment of site-directed cell differentiation system using PEG-DA hydrogel structures .......................................................................................... 20 2.3.2 Damages to multicellular spheroids due to hydrogel swelling behaviors ...... 21 2.3.3 The microfluidic chip assembly and spheroids capturing ............................... 22 2.4 Conclusion ................................................................................................................ 26 Chapter 3: A microfluidic chip with a U-shaped microstructure array for multicellular spheroid formation, culturing, and analysis 3.1 Introduction .............................................................................................................. 28 3.2 Materials and methods .............................................................................................. 31 3.2.1 Materials and regents ....................................................................................... 31 3.2.2 Fabrication of hydrogel-integrated microfluidic systems ................................ 31 3.2.3 Cell seeding and trapping ................................................................................ 33 3.2.4 Cell culture and metabolic activity analysis in the microfluidic system ......... 34 3.2.5 Heterotypic spheroid formation ...................................................................... 34 3.2.6 Image acquisitions and analysis ...................................................................... 36 3.3 Results ...................................................................................................................... 37 3.3.1 Design and fabrication of a microfluidic chip with a U-shaped microstructure array ........................................................................................ 37 3.3.2 Cell trapping and MCS formation ................................................................... 38 3.3.3 Cell metabolic activity assay for doxorubicin treatment ................................ 42 3.3.4 Heterotypic MCS generation .......................................................................... 44 3.4 Discussion ................................................................................................................ 45 3.5 Conclusion ................................................................................................................ 48 Chapter 4: Conclusion and future perspective 49 References ........................................................................................................................ 52 List of publications .......................................................................................................... 61

    [1] L. G. Griffith and M. A. Swartz, "Capturing complex 3D tissue physiology in vitro," Nat Rev Mol Cell Biol, vol. 7, pp. 211-24, Mar 2006.
    [2] E. R. Shamir and A. J. Ewald, "Three-dimensional organotypic culture: experimental models of mammalian biology and disease," Nat Rev Mol Cell Biol, vol. 15, pp. 647-64, Oct 2014.
    [3] L. E. O'Brien, M. M. Zegers, and K. E. Mostov, "Opinion: Building epithelial architecture: insights from three-dimensional culture models," Nat Rev Mol Cell Biol, vol. 3, pp. 531-7, Jul 2002.
    [4] D. E. Jaalouk and J. Lammerding, "Mechanotransduction gone awry," Nat Rev Mol Cell Biol, vol. 10, pp. 63-73, Jan 2009.
    [5] V. Vogel and M. Sheetz, "Local force and geometry sensing regulate cell functions," Nat Rev Mol Cell Biol, vol. 7, pp. 265-75, Apr 2006.
    [6] C. C. DuFort, M. J. Paszek, and V. M. Weaver, "Balancing forces: architectural control of mechanotransduction," Nat Rev Mol Cell Biol, vol. 12, pp. 308-19, May 2011.
    [7] B. Geiger, J. P. Spatz, and A. D. Bershadsky, "Environmental sensing through focal adhesions," Nat Rev Mol Cell Biol, vol. 10, pp. 21-33, Jan 2009.
    [8] E. Cukierman, R. Pankov, D. R. Stevens, and K. M. Yamada, "Taking cell-matrix adhesions to the third dimension," Science, vol. 294, pp. 1708-12, Nov 23 2001.
    [9] F. G. Giancotti and E. Ruoslahti, "Integrin signaling," Science, vol. 285, pp. 1028-32, Aug 13 1999.
    [10] W. Guo and F. G. Giancotti, "Integrin signalling during tumour progression," Nat Rev Mol Cell Biol, vol. 5, pp. 816-26, Oct 2004.
    [11] Kshitiz, J. Park, P. Kim, W. Helen, A. J. Engler, A. Levchenko, et al., "Control of stem cell fate and function by engineering physical microenvironments," Integr Biol (Camb), vol. 4, pp. 1008-18, Sep 2012.
    [12] J. Taipale and J. Keski-Oja, "Growth factors in the extracellular matrix," Faseb j, vol. 11, pp. 51-9, Jan 1997.
    [13] S. N. Bhatia, U. J. Balis, M. L. Yarmush, and M. Toner, "Effect of cell-cell interactions in preservation of cellular phenotype: cocultivation of hepatocytes and nonparenchymal cells," FASEB J, vol. 13, pp. 1883-900, Nov 1999.
    [14] F. Pampaloni, E. G. Reynaud, and E. H. Stelzer, "The third dimension bridges the gap between cell culture and live tissue," Nat Rev Mol Cell Biol, vol. 8, pp. 839-45, Oct 2007.
    [15] A. Abbott, "Cell culture: biology's new dimension," Nature, vol. 424, pp. 870-2, Aug 21 2003.
    [16] D. O. Wiebers, H. P. Adams, Jr., and J. P. Whisnant, "Animal models of stroke: are they relevant to human disease?," Stroke, vol. 21, pp. 1-3, Jan 1990.
    [17] J. P. Gluck and J. Bell, "Ethical issues in the use of animals in biomedical and psychopharmocological research," Psychopharmacology (Berl), vol. 171, pp. 6-12, Dec 2003.
    [18] H. B. van der Worp, D. W. Howells, E. S. Sena, M. J. Porritt, S. Rewell, V. O'Collins, et al., "Can animal models of disease reliably inform human studies?," PLoS Med, vol. 7, p. e1000245, Mar 2010.
    [19] M. A. Lancaster and J. A. Knoblich, "Organogenesis in a dish: modeling development and disease using organoid technologies," Science, vol. 345, p. 1247125, Jul 18 2014.
    [20] M. Ravi, V. Paramesh, S. R. Kaviya, E. Anuradha, and F. D. Solomon, "3D cell culture systems: advantages and applications," J Cell Physiol, vol. 230, pp. 16-26, Jan 2015.
    [21] K. M. Yamada and E. Cukierman, "Modeling tissue morphogenesis and cancer in 3D," Cell, vol. 130, pp. 601-10, Aug 24 2007.
    [22] B. M. Baker and C. S. Chen, "Deconstructing the third dimension: how 3D culture microenvironments alter cellular cues," J Cell Sci, vol. 125, pp. 3015-24, Jul 1 2012.
    [23] S. Boyden, "The chemotactic effect of mixtures of antibody and antigen on polymorphonuclear leucocytes," J Exp Med, vol. 115, pp. 453-66, Mar 1 1962.
    [24] H. C. Chen, "Boyden chamber assay," Methods Mol Biol, vol. 294, pp. 15-22, 2005.
    [25] I. Hubatsch, E. G. Ragnarsson, and P. Artursson, "Determination of drug permeability and prediction of drug absorption in Caco-2 monolayers," Nat Protoc, vol. 2, pp. 2111-9, 2007.
    [26] A. Albini, Y. Iwamoto, H. K. Kleinman, G. R. Martin, S. A. Aaronson, J. M. Kozlowski, et al., "A rapid in vitro assay for quantitating the invasive potential of tumor cells," Cancer Res, vol. 47, pp. 3239-45, Jun 15 1987.
    [27] I. Bucior, C. Tran, and J. Engel, "Assessing Pseudomonas virulence using host cells," Methods Mol Biol, vol. 1149, pp. 741-55, 2014.
    [28] J. Kalabis, G. S. Wong, M. E. Vega, M. Natsuizaka, E. S. Robertson, M. Herlyn, et al., "Isolation and characterization of mouse and human esophageal epithelial cells in 3D organotypic culture," Nat Protoc, vol. 7, pp. 235-46, Feb 2012.
    [29] T. W. Gilbert, T. L. Sellaro, and S. F. Badylak, "Decellularization of tissues and organs," Biomaterials, vol. 27, pp. 3675-83, Jul 2006.
    [30] V. I. Sikavitsas, G. N. Bancroft, and A. G. Mikos, "Formation of three-dimensional cell/polymer constructs for bone tissue engineering in a spinner flask and a rotating wall vessel bioreactor," J Biomed Mater Res, vol. 62, pp. 136-48, Oct 2002.
    [31] K. Funatsu, H. Ijima, K. Nakazawa, Y. Yamashita, M. Shimada, and K. Sugimachi, "Hybrid artificial liver using hepatocyte organoid culture," Artif Organs, vol. 25, pp. 194-200, Mar 2001.
    [32] Q. Qiu, P. Ducheyne, H. Gao, and P. Ayyaswamy, "Formation and differentiation of three-dimensional rat marrow stromal cell culture on microcarriers in a rotating-wall vessel," Tissue Eng, vol. 4, pp. 19-34, Spring 1998.
    [33] M. Nakamura, A. Kobayashi, F. Takagi, A. Watanabe, Y. Hiruma, K. Ohuchi, et al., "Biocompatible inkjet printing technique for designed seeding of individual living cells," Tissue Eng, vol. 11, pp. 1658-66, Nov-Dec 2005.
    [34] K. Jakab, C. Norotte, F. Marga, K. Murphy, G. Vunjak-Novakovic, and G. Forgacs, "Tissue engineering by self-assembly and bio-printing of living cells," Biofabrication, vol. 2, p. 022001, Jun 2010.
    [35] T. Xu, W. Zhao, J. M. Zhu, M. Z. Albanna, J. J. Yoo, and A. Atala, "Complex heterogeneous tissue constructs containing multiple cell types prepared by inkjet printing technology," Biomaterials, vol. 34, pp. 130-9, Jan 2013.
    [36] V. L. Tsang and S. N. Bhatia, "Three-dimensional tissue fabrication," Adv Drug Deliv Rev, vol. 56, pp. 1635-47, Sep 22 2004.
    [37] S. M. Kim, S. H. Lee, and K. Y. Suh, "Cell research with physically modified microfluidic channels: a review," Lab Chip, vol. 8, pp. 1015-23, Jul 2008.
    [38] E. W. Young and D. J. Beebe, "Fundamentals of microfluidic cell culture in controlled microenvironments," Chem Soc Rev, vol. 39, pp. 1036-48, Mar 2010.
    [39] J. Holtfreter, "A study of the mechanics of gastrulation. Part I," Journal of Experimental Zoology, vol. 94, pp. 261-318, 1943.
    [40] A. Moscona and H. Moscona, "The dissociation and aggregation of cells from organ rudiments of the early chick embryo," J Anat, vol. 86, pp. 287-301, Jul 1952.
    [41] R. Z. Lin and H. Y. Chang, "Recent advances in three-dimensional multicellular spheroid culture for biomedical research," Biotechnol J, vol. 3, pp. 1172-84, Oct 2008.
    [42] F. Hirschhaeuser, H. Menne, C. Dittfeld, J. West, W. Mueller-Klieser, and L. A. Kunz-Schughart, "Multicellular tumor spheroids: an underestimated tool is catching up again," J Biotechnol, vol. 148, pp. 3-15, Jul 1 2010.
    [43] G. Francia, S. Man, B. Teicher, L. Grasso, and R. S. Kerbel, "Gene expression analysis of tumor spheroids reveals a role for suppressed DNA mismatch repair in multicellular resistance to alkylating agents," Mol Cell Biol, vol. 24, pp. 6837-49, Aug 2004.
    [44] S. W. Potter and J. E. Morris, "Development of mouse embryos in hanging drop culture," Anat Rec, vol. 211, pp. 48-56, Jan 1985.
    [45] J. M. Kelm, N. E. Timmins, C. J. Brown, M. Fussenegger, and L. K. Nielsen, "Method for generation of homogeneous multicellular tumor spheroids applicable to a wide variety of cell types," Biotechnol Bioeng, vol. 83, pp. 173-80, Jul 20 2003.
    [46] B. E. Reubinoff, M. F. Pera, C. Y. Fong, A. Trounson, and A. Bongso, "Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro," Nat Biotechnol, vol. 18, pp. 399-404, Apr 2000.
    [47] J. M. Kelm and M. Fussenegger, "Microscale tissue engineering using gravity-enforced cell assembly," Trends Biotechnol, vol. 22, pp. 195-202, Apr 2004.
    [48] M. Wartenberg, F. Donmez, F. C. Ling, H. Acker, J. Hescheler, and H. Sauer, "Tumor-induced angiogenesis studied in confrontation cultures of multicellular tumor spheroids and embryoid bodies grown from pluripotent embryonic stem cells," FASEB J, vol. 15, pp. 995-1005, Apr 2001.
    [49] H. Song, O. David, S. Clejan, C. L. Giordano, H. Pappas-Lebeau, L. Xu, et al., "Spatial composition of prostate cancer spheroids in mixed and static cultures," Tissue Eng, vol. 10, pp. 1266-76, Jul-Aug 2004.
    [50] S. L. Nyberg, J. Hardin, B. Amiot, U. A. Argikar, R. P. Remmel, and P. Rinaldo, "Rapid, large-scale formation of porcine hepatocyte spheroids in a novel spheroid reservoir bioartificial liver," Liver Transpl, vol. 11, pp. 901-10, Aug 2005.
    [51] J. M. Yuhas, A. P. Li, A. O. Martinez, and A. J. Ladman, "A simplified method for production and growth of multicellular tumor spheroids," Cancer Res, vol. 37, pp. 3639-43, Oct 1977.
    [52] A. Napolitano, D. Dean, A. Man, J. Youssef, D. Ho, A. Rago, et al., "Scaffold-free three-dimensional cell culture utilizing micromolded nonadhesive hydrogels," BioTechniques, vol. 43, pp. 494-500, 2007.
    [53] M. Ingram, G. B. Techy, R. Saroufeem, O. Yazan, K. S. Narayan, T. J. Goodwin, et al., "Three-dimensional growth patterns of various human tumor cell lines in simulated microgravity of a NASA bioreactor," In Vitro Cell Dev Biol Anim, vol. 33, pp. 459-66, Jun 1997.
    [54] G. R. Souza, J. R. Molina, R. M. Raphael, M. G. Ozawa, D. J. Stark, C. S. Levin, et al., "Three-dimensional tissue culture based on magnetic cell levitation," Nat Nanotechnol, vol. 5, pp. 291-6, Apr 2010.
    [55] J. Debnath and J. S. Brugge, "Modelling glandular epithelial cancers in three-dimensional cultures," Nat Rev Cancer, vol. 5, pp. 675-88, Sep 2005.
    [56] J. Liu, L. A. Kuznetsova, G. O. Edwards, J. Xu, M. Ma, W. M. Purcell, et al., "Functional three-dimensional HepG2 aggregate cultures generated from an ultrasound trap: comparison with HepG2 spheroids," J Cell Biochem, vol. 102, pp. 1180-9, Dec 1 2007.
    [57] H. F. Chan, Y. Zhang, Y. P. Ho, Y. L. Chiu, Y. Jung, and K. W. Leong, "Rapid formation of multicellular spheroids in double-emulsion droplets with controllable microenvironment," Sci Rep, vol. 3, p. 3462, 2013.
    [58] D. Shweiki, M. Neeman, A. Itin, and E. Keshet, "Induction of vascular endothelial growth factor expression by hypoxia and by glucose deficiency in multicell spheroids: implications for tumor angiogenesis," Proc Natl Acad Sci U S A, vol. 92, pp. 768-72, Jan 31 1995.
    [59] R. M. Sutherland, H. A. Eddy, B. Bareham, K. Reich, and D. Vanantwerp, "Resistance to adriamycin in multicellular spheroids," Int J Radiat Oncol Biol Phys, vol. 5, pp. 1225-30, Aug 1979.
    [60] J. Laurent, C. Frongia, M. Cazales, O. Mondesert, B. Ducommun, and V. Lobjois, "Multicellular tumor spheroid models to explore cell cycle checkpoints in 3D," BMC Cancer, vol. 13, p. 73, 2013.
    [61] S. F. Abu-Absi, J. R. Friend, L. K. Hansen, and W. S. Hu, "Structural polarity and functional bile canaliculi in rat hepatocyte spheroids," Exp Cell Res, vol. 274, pp. 56-67, Mar 10 2002.
    [62] U. Rajcevic, J. C. Knol, S. Piersma, S. Bougnaud, F. Fack, E. Sundlisaeter, et al., "Colorectal cancer derived organotypic spheroids maintain essential tissue characteristics but adapt their metabolism in culture," Proteome Sci, vol. 12, p. 39, 2014.
    [63] A. C. Luca, S. Mersch, R. Deenen, S. Schmidt, I. Messner, K. L. Schafer, et al., "Impact of the 3D microenvironment on phenotype, gene expression, and EGFR inhibition of colorectal cancer cell lines," PLoS One, vol. 8, p. e59689, 2013.
    [64] I. Vega-Naredo, R. Loureiro, K. A. Mesquita, I. A. Barbosa, L. C. Tavares, A. F. Branco, et al., "Mitochondrial metabolism directs stemness and differentiation in P19 embryonal carcinoma stem cells," Cell Death Differ, vol. 21, pp. 1560-74, Oct 2014.
    [65] N. C. Cheng, S. Wang, and T. H. Young, "The influence of spheroid formation of human adipose-derived stem cells on chitosan films on stemness and differentiation capabilities," Biomaterials, vol. 33, pp. 1748-58, Feb 2012.
    [66] W. Mueller-Klieser, "Multicellular spheroids. A review on cellular aggregates in cancer research," J Cancer Res Clin Oncol, vol. 113, pp. 101-22, 1987.
    [67] R. M. Sutherland, "Cell and environment interactions in tumor microregions: the multicell spheroid model," Science, vol. 240, pp. 177-84, Apr 8 1988.
    [68] G. Hamilton, "Multicellular spheroids as an in vitro tumor model," Cancer Lett, vol. 131, pp. 29-34, Sep 11 1998.
    [69] L. A. Kunz-Schughart, M. Kreutz, and R. Knuechel, "Multicellular spheroids: a three-dimensional in vitro culture system to study tumour biology," Int J Exp Pathol, vol. 79, pp. 1-23, Feb 1998.
    [70] M. T. Santini, G. Rainaldi, and P. L. Indovina, "Multicellular tumour spheroids in radiation biology," Int J Radiat Biol, vol. 75, pp. 787-99, Jul 1999.
    [71] R. Sutherland, J. Carlsson, R. Durand, and J. Yuhas, "Spheroids in Cancer Research," Cancer Research, vol. 41, pp. 2980-2984, July 1, 1981 1981.
    [72] R. Z. Lin, W. C. Chu, C. C. Chiang, C. H. Lai, and H. Y. Chang, "Magnetic reconstruction of three-dimensional tissues from multicellular spheroids," Tissue Eng Part C Methods, vol. 14, pp. 197-205, Sep 2008.
    [73] V. Mironov, R. P. Visconti, V. Kasyanov, G. Forgacs, C. J. Drake, and R. R. Markwald, "Organ printing: tissue spheroids as building blocks," Biomaterials, vol. 30, pp. 2164-74, Apr 2009.
    [74] N. C. Rivron, J. Rouwkema, R. Truckenmuller, M. Karperien, J. De Boer, and C. A. Van Blitterswijk, "Tissue assembly and organization: developmental mechanisms in microfabricated tissues," Biomaterials, vol. 30, pp. 4851-8, Oct 2009.
    [75] L. A. Kunz-Schughart, J. P. Freyer, F. Hofstaedter, and R. Ebner, "The use of 3-D cultures for high-throughput screening: the multicellular spheroid model," J Biomol Screen, vol. 9, pp. 273-85, Jun 2004.
    [76] J. Friedrich, C. Seidel, R. Ebner, and L. A. Kunz-Schughart, "Spheroid-based drug screen: considerations and practical approach," Nat Protoc, vol. 4, pp. 309-24, 2009.
    [77] G. Mehta, A. Y. Hsiao, M. Ingram, G. D. Luker, and S. Takayama, "Opportunities and challenges for use of tumor spheroids as models to test drug delivery and efficacy," J Control Release, vol. 164, pp. 192-204, Dec 10 2012.
    [78] M. Vinci, S. Gowan, F. Boxall, L. Patterson, M. Zimmermann, W. Court, et al., "Advances in establishment and analysis of three-dimensional tumor spheroid-based functional assays for target validation and drug evaluation," BMC Biol, vol. 10, p. 29, 2012.
    [79] A. Reininger-Mack, H. Thielecke, and A. A. Robitzki, "3D-biohybrid systems: applications in drug screening," Trends Biotechnol, vol. 20, pp. 56-61, Feb 2002.
    [80] D. V. LaBarbera, B. G. Reid, and B. H. Yoo, "The multicellular tumor spheroid model for high-throughput cancer drug discovery," Expert Opin Drug Discov, vol. 7, pp. 819-30, Sep 2012.
    [81] S. R. Horman, J. To, A. P. Orth, N. Slawny, M. J. Cuddihy, and D. Caracino, "High-content analysis of three-dimensional tumor spheroids: investigating signaling pathways using small hairpin RNA," Nat Meth, vol. 10, 10//print 2013.
    [82] Y. C. Tung, A. Y. Hsiao, S. G. Allen, Y. S. Torisawa, M. Ho, and S. Takayama, "High-throughput 3D spheroid culture and drug testing using a 384 hanging drop array," Analyst, vol. 136, pp. 473-8, Feb 7 2011.
    [83] M. Rimann and U. Graf-Hausner, "Synthetic 3D multicellular systems for drug development," Curr Opin Biotechnol, vol. 23, pp. 803-9, Oct 2012.
    [84] H. Ruffner and J. Lichtenberg, "3D cell culture systems--towards primary drug discovery platforms: an interview with Heinz Ruffner (Novartis) and Jan Lichtenberg (InSphero)," Biotechnol J, vol. 7, pp. 833-4, Jul 2012.
    [85] J. Patterson, M. M. Martino, and J. A. Hubbell, "Biomimetic materials in tissue engineering," Materials Today, vol. 13, pp. 14-22, 1// 2010.
    [86] J. A. Hubbell, "Biomaterials in tissue engineering," Biotechnology (N Y), vol. 13, pp. 565-76, Jun 1995.
    [87] C. G. Williams, T. K. Kim, A. Taboas, A. Malik, P. Manson, and J. Elisseeff, "In vitro chondrogenesis of bone marrow-derived mesenchymal stem cells in a photopolymerizing hydrogel," Tissue Eng, vol. 9, pp. 679-88, Aug 2003.
    [88] M. W. Tibbitt and K. S. Anseth, "Hydrogels as extracellular matrix mimics for 3D cell culture," Biotechnol Bioeng, vol. 103, pp. 655-63, Jul 1 2009.
    [89] J. L. Ifkovits and J. A. Burdick, "Review: photopolymerizable and degradable biomaterials for tissue engineering applications," Tissue Eng, vol. 13, pp. 2369-85, Oct 2007.
    [90] M. K. Nguyen and D. S. Lee, "Injectable biodegradable hydrogels," Macromol Biosci, vol. 10, pp. 563-79, Jun 11 2010.
    [91] W. G. Koh and M. V. Pishko, "Fabrication of cell-containing hydrogel microstructures inside microfluidic devices that can be used as cell-based biosensors," Anal Bioanal Chem, vol. 385, pp. 1389-97, Aug 2006.
    [92] Y. Du, E. Lo, S. Ali, and A. Khademhosseini, "Directed assembly of cell-laden microgels for fabrication of 3D tissue constructs," Proc Natl Acad Sci U S A, vol. 105, pp. 9522-7, Jul 15 2008.
    [93] G. M. Whitesides, "The origins and the future of microfluidics," Nature, vol. 442, pp. 368-73, Jul 27 2006.
    [94] D. B. Weibel, W. R. Diluzio, and G. M. Whitesides, "Microfabrication meets microbiology," Nat Rev Microbiol, vol. 5, pp. 209-18, Mar 2007.
    [95] K. Gupta, D. H. Kim, D. Ellison, C. Smith, A. Kundu, J. Tuan, et al., "Lab-on-a-chip devices as an emerging platform for stem cell biology," Lab Chip, vol. 10, pp. 2019-31, Aug 21 2010.
    [96] G. Velve-Casquillas, M. Le Berre, M. Piel, and P. T. Tran, "Microfluidic tools for cell biological research," Nano Today, vol. 5, pp. 28-47, Feb 2010.
    [97] L. Y. Wu, D. Di Carlo, and L. P. Lee, "Microfluidic self-assembly of tumor spheroids for anticancer drug discovery," Biomed Microdevices, vol. 10, pp. 197-202, Apr 2008.
    [98] S. Lindstrom, M. Eriksson, T. Vazin, J. Sandberg, J. Lundeberg, J. Frisen, et al., "High-density microwell chip for culture and analysis of stem cells," PLoS One, vol. 4, p. e6997, 2009.
    [99] E. Kang, Y. Y. Choi, Y. Jun, B. G. Chung, and S. H. Lee, "Development of a multi-layer microfluidic array chip to culture and replate uniform-sized embryoid bodies without manual cell retrieval," Lab Chip, vol. 10, pp. 2651-4, Oct 21 2010.
    [100] L. Yu, M. C. Chen, and K. C. Cheung, "Droplet-based microfluidic system for multicellular tumor spheroid formation and anticancer drug testing," Lab Chip, vol. 10, pp. 2424-32, Sep 21 2010.
    [101] J. E. Morris, S. W. Potter, and P. M. Buckley, "Mouse embryos and uterine epithelia show adhesive interactions in culture," J Exp Zool, vol. 222, pp. 195-8, Aug 10 1982.
    [102] J. E. Morris, S. W. Potter, L. S. Rynd, and P. M. Buckley, "Adhesion of mouse blastocysts to uterine epithelium in culture: a requirement for mutual surface interactions," J Exp Zool, vol. 225, pp. 467-79, Mar 1983.
    [103] K. T. Nguyen and J. L. West, "Photopolymerizable hydrogels for tissue engineering applications," Biomaterials, vol. 23, pp. 4307-14, Nov 2002.
    [104] I. Tomatsu, K. Peng, and A. Kros, "Photoresponsive hydrogels for biomedical applications," Adv Drug Deliv Rev, vol. 63, pp. 1257-66, Nov 2011.
    [105] F. Yang, C. G. Williams, D. A. Wang, H. Lee, P. N. Manson, and J. Elisseeff, "The effect of incorporating RGD adhesive peptide in polyethylene glycol diacrylate hydrogel on osteogenesis of bone marrow stromal cells," Biomaterials, vol. 26, pp. 5991-8, Oct 2005.
    [106] A. Khademhosseini and R. Langer, "Microengineered hydrogels for tissue engineering," Biomaterials, vol. 28, pp. 5087-92, Dec 2007.
    [107] J. Zhu, "Bioactive modification of poly(ethylene glycol) hydrogels for tissue engineering," Biomaterials, vol. 31, pp. 4639-56, Jun 2010.
    [108] G. M. Cruise, D. S. Scharp, and J. A. Hubbell, "Characterization of permeability and network structure of interfacially photopolymerized poly(ethylene glycol) diacrylate hydrogels," Biomaterials, vol. 19, pp. 1287-94, Jul 1998.
    [109] V. Hagel, T. Haraszti, and H. Boehm, "Diffusion and interaction in PEG-DA hydrogels," Biointerphases, vol. 8, p. 36, Dec 2013.
    [110] A. Revzin, R. J. Russell, V. K. Yadavalli, W. G. Koh, C. Deister, D. D. Hile, et al., "Fabrication of poly(ethylene glycol) hydrogel microstructures using photolithography," Langmuir, vol. 17, pp. 5440-7, Sep 4 2001.
    [111] M. A. Traore and B. Behkam, "A PEG-DA microfluidic device for chemotaxis studies," Journal of Micromechanics and Microengineering, vol. 23, p. 085014, 2013.
    [112] M. P. Cuchiara, A. C. Allen, T. M. Chen, J. S. Miller, and J. L. West, "Multilayer microfluidic PEGDA hydrogels," Biomaterials, vol. 31, pp. 5491-7, Jul 2010.
    [113] M. S. Hahn, L. J. Taite, J. J. Moon, M. C. Rowland, K. A. Ruffino, and J. L. West, "Photolithographic patterning of polyethylene glycol hydrogels," Biomaterials, vol. 27, pp. 2519-24, Apr 2006.
    [114] W. G. Koh, A. Revzin, and M. V. Pishko, "Poly(ethylene glycol) hydrogel microstructures encapsulating living cells," Langmuir, vol. 18, pp. 2459-62, Apr 2 2002.
    [115] A. Khademhosseini, R. Langer, J. Borenstein, and J. P. Vacanti, "Microscale technologies for tissue engineering and biology," Proc Natl Acad Sci U S A, vol. 103, pp. 2480-7, Feb 21 2006.
    [116] G. Eng, B. W. Lee, H. Parsa, C. D. Chin, J. Schneider, G. Linkov, et al., "Assembly of complex cell microenvironments using geometrically docked hydrogel shapes," Proc Natl Acad Sci U S A, vol. 110, pp. 4551-6, Mar 19 2013.
    [117] K. Itoga, M. Yamato, J. Kobayashi, A. Kikuchi, and T. Okano, "Cell micropatterning using photopolymerization with a liquid crystal device commercial projector," Biomaterials, vol. 25, pp. 2047-2053, 2004.
    [118] C. M. Halliwell and A. E. Cass, "A factorial analysis of silanization conditions for the immobilization of oligonucleotides on glass surfaces," Anal Chem, vol. 73, pp. 2476-83, Jun 1 2001.
    [119] W. Mueller-Klieser, "Three-dimensional cell cultures: from molecular mechanisms to clinical applications," Am J Physiol, vol. 273, pp. C1109-23, Oct 1997.
    [120] R. Langer and J. P. Vacanti, "Tissue engineering," Science, vol. 260, pp. 920-6, May 14 1993.
    [121] R. M. Sutherland, B. Sordat, J. Bamat, H. Gabbert, B. Bourrat, and W. Mueller-Klieser, "Oxygenation and differentiation in multicellular spheroids of human colon carcinoma," Cancer Res, vol. 46, pp. 5320-9, Oct 1986.
    [122] W. Fujie, T. Kirino, N. Tomukai, T. Iwasawa, and A. Tamura, "Progressive shrinkage of the thalamus following middle cerebral artery occlusion in rats," Stroke, vol. 21, pp. 1485-8, Oct 1990.
    [123] E. Berthier, E. W. Young, and D. Beebe, "Engineers are from PDMS-land, Biologists are from Polystyrenia," Lab Chip, vol. 12, pp. 1224-37, Apr 7 2012.
    [124] D. Huh, G. A. Hamilton, and D. E. Ingber, "From 3D cell culture to organs-on-chips," Trends Cell Biol, vol. 21, pp. 745-54, Dec 2011.
    [125] I. K. Zervantonakis, S. K. Hughes-Alford, J. L. Charest, J. S. Condeelis, F. B. Gertler, and R. D. Kamm, "Three-dimensional microfluidic model for tumor cell intravasation and endothelial barrier function," Proc Natl Acad Sci U S A, vol. 109, pp. 13515-20, Aug 21 2012.
    [126] D. H. Nguyen, S. C. Stapleton, M. T. Yang, S. S. Cha, C. K. Choi, P. A. Galie, et al., "Biomimetic model to reconstitute angiogenic sprouting morphogenesis in vitro," Proc Natl Acad Sci U S A, vol. 110, pp. 6712-7, Apr 23 2013.
    [127] S. F. Wong, Y. No da, Y. Y. Choi, D. S. Kim, B. G. Chung, and S. H. Lee, "Concave microwell based size-controllable hepatosphere as a three-dimensional liver tissue model," Biomaterials, vol. 32, pp. 8087-96, Nov 2011.
    [128] A. Sebastian, A. M. Buckle, and G. H. Markx, "Tissue engineering with electric fields: immobilization of mammalian cells in multilayer aggregates using dielectrophoresis," Biotechnol Bioeng, vol. 98, pp. 694-700, Oct 15 2007.
    [129] S. Ahadian, S. Yamada, J. Ramon-Azcon, K. Ino, H. Shiku, A. Khademhosseini, et al., "Rapid and high-throughput formation of 3D embryoid bodies in hydrogels using the dielectrophoresis technique," Lab Chip, vol. 14, pp. 3690-4, Oct 7 2014.
    [130] H. J. Jin, Y. H. Cho, J. M. Gu, J. Kim, and Y. S. Oh, "A multicellular spheroid formation and extraction chip using removable cell trapping barriers," Lab Chip, vol. 11, pp. 115-9, Jan 7 2011.
    [131] K. Khoshmanesh, J. Akagi, C. J. Hall, K. E. Crosier, P. S. Crosier, J. M. Cooper, et al., "New rationale for large metazoan embryo manipulations on chip-based devices," Biomicrofluidics, vol. 6, pp. 24102-2410214, Jun 2012.
    [132] W. Liu, L. Li, J. C. Wang, Q. Tu, L. Ren, Y. Wang, et al., "Dynamic trapping and high-throughput patterning of cells using pneumatic microstructures in an integrated microfluidic device," Lab Chip, vol. 12, pp. 1702-9, May 7 2012.
    [133] G. H. Underhill, A. A. Chen, D. R. Albrecht, and S. N. Bhatia, "Assessment of hepatocellular function within PEG hydrogels," Biomaterials, vol. 28, pp. 256-70, Jan 2007.
    [134] D. Dendukuri, D. C. Pregibon, J. Collins, T. A. Hatton, and P. S. Doyle, "Continuous-flow lithography for high-throughput microparticle synthesis," Nat Mater, vol. 5, pp. 365-9, May 2006.
    [135] S. E. Chung, W. Park, S. Shin, S. A. Lee, and S. Kwon, "Guided and fluidic self-assembly of microstructures using railed microfluidic channels," Nat Mater, vol. 7, pp. 581-7, Jul 2008.
    [136] C. Y. Fu, C. Y. Lin, W. C. Chu, and H. Y. Chang, "A simple cell patterning method using magnetic particle-containing photosensitive poly (ethylene glycol) hydrogel blocks: a technical note," Tissue Eng Part C Methods, vol. 17, pp. 871-7, Aug 2011.
    [137] W. J. Ho, E. A. Pham, J. W. Kim, C. W. Ng, J. H. Kim, D. T. Kamei, et al., "Incorporation of multicellular spheroids into 3-D polymeric scaffolds provides an improved tumor model for screening anticancer drugs," Cancer Sci, vol. 101, pp. 2637-43, Dec 2010.
    [138] A. Oshikata, T. Matsushita, and R. Ueoka, "Enhancement of drug efflux activity via MDR1 protein by spheroid culture of human hepatic cancer cells," J Biosci Bioeng, vol. 111, pp. 590-3, May 2011.
    [139] A. P. Wong, R. Perez-Castillejos, J. Christopher Love, and G. M. Whitesides, "Partitioning microfluidic channels with hydrogel to construct tunable 3-D cellular microenvironments," Biomaterials, vol. 29, pp. 1853-61, Apr 2008.
    [140] R. Sudo, S. Chung, I. K. Zervantonakis, V. Vickerman, Y. Toshimitsu, L. G. Griffith, et al., "Transport-mediated angiogenesis in 3D epithelial coculture," FASEB J, vol. 23, pp. 2155-64, Jul 2009.
    [141] Y. Shin, S. Han, J. S. Jeon, K. Yamamoto, I. K. Zervantonakis, R. Sudo, et al., "Microfluidic assay for simultaneous culture of multiple cell types on surfaces or within hydrogels," Nat Protoc, vol. 7, pp. 1247-59, Jul 2012.
    [142] D. J. Beebe, J. S. Moore, J. M. Bauer, Q. Yu, R. H. Liu, C. Devadoss, et al., "Functional hydrogel structures for autonomous flow control inside microfluidic channels," Nature, vol. 404, pp. 588-90, Apr 6 2000.
    [143] P. L. Olive and R. E. Durand, "Drug and radiation resistance in spheroids: cell contact and kinetics," Cancer Metastasis Rev, vol. 13, pp. 121-38, Jun 1994.
    [144] N. L. Jeon, S. K. W. Dertinger, D. T. Chiu, I. S. Choi, A. D. Stroock, and G. M. Whitesides, "Generation of Solution and Surface Gradients Using Microfluidic Systems," Langmuir, vol. 16, pp. 8311-8316, 2000/10/01 2000.
    [145] W. Mueller-Klieser, "Tumor biology and experimental therapeutics," Crit Rev Oncol Hematol, vol. 36, pp. 123-39, Nov-Dec 2000.
    [146] J. B. Kim, R. Stein, and M. J. O'Hare, "Three-dimensional in vitro tissue culture models of breast cancer-- a review," Breast Cancer Res Treat, vol. 85, pp. 281-91, Jun 2004.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE