簡易檢索 / 詳目顯示

研究生: 周建成
Chou, Chien-Cheng
論文名稱: 發展磁性奈米探針用以純化和鑑定硫基亞硝基化胜肽
Development of a Nano-based Affinity Probe for Purification and Identification of S-nitrosylated Peptide
指導教授: 林俊成
Lin, Chun-Cheng
口試委員: 林俊宏
林伯樵
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 94
中文關鍵詞: 亞硝基化磁性奈米粒子
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 一氧化氮分子在細胞間訊息傳遞可藉由與半胱胺酸上的硫基形成可逆共價鍵結,稱為硫基亞硝基化/去亞硝基化。目前已有許多文獻指出蛋白質的活性和功能可經由此種調節進而影響多種生理機制。然而,S-NO鍵的不穩定增加了研究上的挑戰,使得目前對於亞硝基化的條件和反應機制仍不明確。現今發展的許多偵測RSNO的方法,可直接或間接的提供部分RSNO訊息,其中應用最廣泛的為類生物素轉換技術,此方法可經由一系列覆蓋策略將RSNO從細胞樣品中純化與鑑定。
    2009年,Wang 和Xian等人發表了一種可將一級RSNO轉換成相對穩定的雙硫鍵產物反應機制,稱為二次接合反應,此反應可在溫和的條件下進行,且獲得良好的產率。基於此研究,我們將硫酯基探針與磁性奈米粒子結合,應用於純化和鑑定RSNOs。將亞硝基化標準胜肽PTP1B與BSA複雜樣品混合後,磁性探針可成功的純化出PTP1B,證實了此想法的可行性,我們相信此探針在研究亞硝基化蛋白上具有極大的潛力。


    Nitric oxide (NO) influenced on cellular signaling in large part by means of S-nitrosylation/denitrosylation, the NO group covalently attach to the thiol side chain of cysteine resulting in the formation of S-nitrosothiols (RSNOs). RSNOs regulated proteins activity and function in a wide range of cellular pathways and physiological processes. However, the condition and mechanism of RSNOs formation remains uncertain, due to the lability of the S-NO bond caused the challenging for research. To date, numerous methods for assay RSNOs directly or indirectly have been developed. Among methods for studying RSNOs, biotin switch technology (BST) was used most commonly which can be used to detect and isolate SNO proteins from cell extracts in series of capping steps. In 2009, Wang and Ming et al. reported a bis-ligation mechanism of RSNOs which can converts unstable primary RSNOs to stable disulfide-iminophosphorane products in high yields under mild conditions. Based on this study, we conjugated the thioester phosphine ligand to the magnetic nanoparticle(MNP) for identification and purification of RSNOs. To verify the feasibility of the idea, the S-nitrosylated PTP1B peptide mixed in tryptic BSA mixture (50 ug) was successfully captured by the magnet probe and identified by MALDI-TOF. We believe this strategy wiil become a potential tool used in investigate S-nitrosylation proteins.

    第一章、序論 1 1.1 一氧化氮(nitric oxide, NO) 1 1.2 硫基亞硝基化蛋白(S-nitrosylation protein) 2 1.2.1 蛋白質亞硝基化 2 1.2.2 亞硝基蛋白與生理現象 3 1.3 偵測蛋白質硫基亞硝基化的方法 5 1.3.1 直接觀測方式 6 1.3.2 濃度量測 7 1.3.3 修飾位置鑑定: 生物素轉換技術(Biotin switch technology, BST) 9 1.3.4 可追蹤式還原接合亞硝基化硫基反應(traceless reductive ligation of S-nitrosothiols, TRL-SNO) 12 1.3.5 生物素轉換技術與可追蹤式還原接合亞硝基化硫基反應比較 17 1.4 蛋白質體學純化與鑑定 18 1.4.1 蛋白質體學 18 1.4.2 質譜技術於蛋白質體學的運用 18 1.4.2.1 蛋白質身分鑑定(protein identification) 19 1.4.2.2 游離技術 19 1.5 磁性奈米粒子 21 1.5.1 磁性氧化鐵奈米粒子的特性 21 1.5.2 氧化鐵奈米粒子的製備 22 1.5.3 功能化氧化鐵奈米粒子的運用 23 1.6 研究目標 25 第二章、專一性探針製備與應用 26 2.1 探針製備 26 2.1.1 一般型探針 26 2.1.2 標定型磁性探針 28 2.1.2.1 DSS修飾MNP製備探針 29 2.1.2.2 anhydride修飾MNP製備探針 29 2.1.2.3 NPCC修飾MNP製備探針 30 2.1.3 對照組磁性探針 35 2.2 磁性探針定性與定量 36 2.2.1 表面官能基鑑定 36 2.2.2 濃度定量 38 2.2.3 水合粒徑分布與表面電位 39 2.3 偵測結果與討論 41 2.3.1 一般型探針 42 2.3.2 標定型磁性探針 44 2.3.2.1 容載量(Capacity) 45 2.3.2.2 偵測極限(limit of detection) 46 2.3.2.3 專一性測試 47 2.3.3 非專一性吸附討論 49 2.3.3.1 酸基衍生物 49 2.3.3.2 硫酯基穩定性測試 52 2.3.3.3 庫倫靜電引力吸附 55 第三章、結論與未來展望 57 3.1 結論 57 3.2 未來展望 57 第四章、實驗方法 61 4.1 藥品與器材 61 4.2 實驗步驟 62 4.2.1 一般型探針合成 62 4.2.2 胺基化磁性探針製備 67 4.2.3 專一性探針製備 68 4.2.3.1 DSS表面修飾策略: 68 4.2.3.2 Anhydride表面修飾策略: 68 4.2.3.3 NPCC表面修飾策略: 69 4.2.4 對照組探針製備 72 4.2.5 磁性探針水解定量實驗 72 4.3 亞硝基化胜肽純化實驗 73 4.3.1 標準胜肽PTP1B亞硝基化 73 4.3.2 一般型探針純化實驗 73 4.3.2.1 反應性測試 73 4.3.2.2 反應溶劑系統與反應酸鹼值條件優選 74 4.3.3 磁性探針純化實驗 74 4.3.3.1 反應性測試 74 4.3.3.2 洗滌條件 74 4.3.3.3 容載量與偵測極限測試 75 4.3.3.4 專一性測試 75 4.3.3.5 對照組探針實驗 75 4.3.3.6 覆蓋實驗 75

    1. Ignarro, L. J.; Nitric Oxide: Biology and Pathobiology, 2nd Edition. 2010, Academic Press, New York.
    2. Arnold, W. P.; Mittal, C. K.; Katsuki, S.; Murad, F., Nitric oxide activates guanylate cyclase and increases guanosine 3':5'-cyclic monophosphate levels in various tissue preparations. Proc. Natl. Acad. Sci. 1977, 74, 3203.
    3. Furchgott, R. F.; Zawadzki, J. V., The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 1980, 288, 373.
    4. Ignarro, L. J.; Buga, G. M.; Wood, K. S.; Byrns, R. E.; Chaudhuri, G., Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc. Natl. Acad. Sci. 1987, 84, 9265.
    5. Palmer, R. M.; Ferrige, A. G.; Moncada, S., Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 1987, 327, 524.
    6. Liu, L.; Yan, Y.; Zeng, M.; Zhang, J.; Hanes, M. A.; Ahearn, G.; McMahon, T. J.; Dickfeld, T.; Marshall, H. E.; Que, L. G.; Stamler, J. S., Essential roles of S-nitrosothiols in vascular homeostasis and endotoxic shock. Cell 2004, 116, 617.
    7. Nakamura, T.; Lipton, S. A., S-Nitrosylation and uncompetitive/fast off-rate (UFO) drug therapy in neurodegenerative disorders of protein misfolding. Cell Death Differ. 2007, 14, 1305.
    8. Yang, Z.; Wang, Z. E.; Doulias, P. T.; Wei, W.; Ischiropoulos, H.; Locksley, R. M.; Liu, L., Lymphocyte development requires S-nitrosoglutathione reductase. J. Immunol. 2010, 185, 6664.
    9. Culotta, E.; Koshland, D. E., No News Is Good-News. Science 1992, 258, 1862.
    10. Stamler, J. S.; Simon, D. I.; Osborne, J. A.; Mullins, M. E.; Jaraki, O.; Michel, T.; Singel, D. J.; Loscalzo, J., S-nitrosylation of proteins with nitric oxide: synthesis and characterization of biologically active compounds. Proc. Natl. Acad. Sci. 1992, 89, 444.
    11. Broillet, M. C., S-nitrosylation of proteins. Cell. Mol. Life. Sci. 1999, 55, 1036.
    12. Xu, L.; Eu, J. P.; Meissner, G.; Stamler, J. S., Activation of the cardiac calcium release channel (ryanodine receptor) by poly-S-nitrosylation. Science 1998, 279, 234.
    13. Liu, M.; Hou, J.; Huang, L.; Huang, X.; Heibeck, T. H.; Zhao, R.; Pasa-Tolic, L.; Smith, R. D.; Li, Y.; Fu, K.; Zhang, Z.; Hinrichs, S. H.; Ding, S. J., Site-specific proteomics approach for study protein S-nitrosylation. Anal. Chem. 2010, 82, 7160.
    14. Uehara, T.; Nakamura, T.; Yao, D.; Shi, Z.-Q.; Gu, Z.; Ma, Y.; Masliah, E.; Nomura, Y.; Lipton, S. A., S-Nitrosylated protein-disulphide isomerase links protein misfolding to neurodegeneration. Nature 2006, 441, 513.
    15. Kim, Y. M.; Talanian, R. V.; Billiar, T. R., Nitric oxide inhibits apoptosis by preventing increases in caspase-3-like activity via two distinct mechanisms. J. Biol. Chem. 1997, 272, 31138.
    16. Roy, B.; du Moulinet d'Hardemare, A.; Fontecave, M., New Thionitrites: Synthesis, Stability, and Nitric Oxide Generation. J. Org. Chem. 1994, 59, 7019.
    17. Bartberger, M. D.; Mannion, J. D.; Powell, S. C.; Stamler, J. S.; Houk, K. N.; Toone, E. J., S-N dissociation energies of S-nitrosothiols: on the origins of nitrosothiol decomposition rates. J. Am. Chem. Soc. 2001, 123, 8868.
    18. Gow, A.; Doctor, A.; Mannick, J.; Gaston, B., S-Nitrosothiol measurements in biological systems. J. Chromatogr. B. Analyt. Technol. Biomed. Life. Sci. 2007, 851, 140.
    19. Zhang, J.; Wang, H.; Xian, M., An unexpected Bis-ligation of S-nitrosothiols. J. Am. Chem. Soc. 2009, 131, 3854.
    20. Jaffrey, S. R.; Erdjument-Bromage, H.; Ferris, C. D.; Tempst, P.; Snyder, S. H., Protein S-nitrosylation: a physiological signal for neuronal nitric oxide. Nat. Cell Biol. 2001, 3, 193.
    21. Mirza, U. A.; Chait, B. T.; Lander, H. M., Monitoring reactions of nitric oxide with peptides and proteins by electrospray ionization-mass spectrometry. J. Biol. Chem. 1995, 270, 17185.
    22. Torta, F.; Usuelli, V.; Malgaroli, A.; Bachi, A., Proteomic analysis of protein S-nitrosylation. Proteomics 2008, 8, 4484.
    23. (a) Fang, K.; Ragsdale, N. V.; Carey, R. M.; MacDonald, T.; Gaston, B., Reductive assays for S-nitrosothiols: implications for measurements in biological systems. Biochem. Biophys. Res. Commun. 1998, 252, 535;(b) Doctor, A.; Platt, R.; Sheram, M. L.; Eischeid, A.; McMahon, T.; Maxey, T.; Doherty, J.; Axelrod, M.; Kline, J.; Gurka, M.; Gow, A.; Gaston, B., Hemoglobin conformation couples erythrocyte S-nitrosothiol content to O2 gradients. Proc. Natl. Acad. Sci. 2005, 102, 5709.
    24. Kojima, H.; Nakatsubo, N.; Kikuchi, K.; Kawahara, S.; Kirino, Y.; Nagoshi, H.; Hirata, Y.; Nagano, T., Detection and imaging of nitric oxide with novel fluorescent indicators: diaminofluoresceins. Anal .Chem. 1998, 70, 2446.
    25. Goto, M.; Sato, K.; Murakami, A.; Tokeshi, M.; Kitamori, T., Development of a microchip-based bioassay system using cultured cells. Anal. Chem. 2005, 77, 2125.
    26. Gao, C.; Guo, H.; Wei, J.; Mi, Z.; Wai, P. Y.; Kuo, P. C., Identification of S-nitrosylated proteins in endotoxin-stimulated RAW264.7 murine macrophages. Nitric Oxide 2005, 12, 121.
    27. Forrester, M. T.; Thompson, J. W.; Foster, M. W.; Nogueira, L.; Moseley, M. A.; Stamler, J. S., Proteomic analysis of S-nitrosylation and denitrosylation by resin-assisted capture. Nat. Biotechnol. 2009, 27, 557.
    28. Tello, D.; Tarin, C.; Ahicart, P.; Breton-Romero, R.; Lamas, S.; Martinez-Ruiz, A., A "fluorescence switch" technique increases the sensitivity of proteomic detection and identification of S-nitrosylated proteins. Proteomics 2009, 9, 5359.
    29. (a) Wang, H.; Xian, M., Fast reductive ligation of S-nitrosothiols. Angew. Chem. Int. Ed. Engl. 2008, 47, 6598;(b) Zhang, J.; Wang, H.; Xian, M., Exploration of the "traceless" reductive ligation of S-nitrosothiols. Org. Lett. 2009, 11, 477;(c) Zhang, J.; Li, S.; Zhang, D.; Wang, H.; Whorton, A. R.; Xian, M., Reductive ligation mediated one-step disulfide formation of S-nitrosothiols. Org. Lett. 2010, 12, 4208.
    30. Haake, M., Zur desoxygenierung von tritylthionitrit. Tetrahedr. Lett. 1972, 13, 3405.
    31. (a) Saxon, E.; Bertozzi, C. R., Cell surface engineering by a modified Staudinger reaction. Science 2000, 287, 2007;(b) Lin, F. L.; Hoyt, H. M.; van Halbeek, H.; Bergman, R. G.; Bertozzi, C. R., Mechanistic investigation of the staudinger ligation. J. Am. Chem. Soc. 2005, 127, 2686;(c) Nilsson, B. L.; Hondal, R. J.; Soellner, M. B.; Raines, R. T., Protein assembly by orthogonal chemical ligation methods. J. Am. Chem. Soc. 2003, 125, 5268;(d) Soellner, M. B.; Nilsson, B. L.; Raines, R. T., Reaction mechanism and kinetics of the traceless Staudinger ligation. J. Am. Chem. Soc. 2006, 128, 8820;(e) Hang, H. C.; Bertozzi, C. R., Chemoselective approaches to glycoprotein assembly. Acc. Chem. Res. 2001, 34, 727.
    32. Craine, L.; Raban, M., The chemistry of sulfenamides. Chem. Rev. 1989, 89, 689.
    33. Gladwin, M. T.; Wang, X.; Hogg, N., Methodological vexation about thiol oxidation versus S-nitrosation -- a commentary on "An ascorbate-dependent artifact that interferes with the interpretation of the biotin-switch assay". Free Radic. Biol. Med. 2006, 41, 557.
    34. Landino, L. M.; Koumas, M. T.; Mason, C. E.; Alston, J. A., Ascorbic acid reduction of microtubule protein disulfides and its relevance to protein S-nitrosylation assays. Biochem. Biophys. Res. Commun. 2006, 340, 347.
    35. (a) Pandey, A.; Mann, M., Proteomics to study genes and genomes. Nature 2000, 405, 837;(b) Naaby-Hansen, S.; Waterfield, M. D.; Cramer, R., Proteomics--post-genomic cartography to understand gene function. Trends. Pharmacol. Sci. 2001, 22, 376.
    36. Uversky, V. N., Use of fast protein size-exclusion liquid chromatography to study the unfolding of proteins which denature through the molten globule. Biochemistry 1993, 32, 13288.
    37. Beausoleil, S. A.; Villen, J.; Gerber, S. A.; Rush, J.; Gygi, S. P., A probability-based approach for high-throughput protein phosphorylation analysis and site localization. Nat. Biotechnol. 2006, 24, 1285.
    38. Freydell, E. J.; van, d. W. L.; Eppink, M.; Ottens, M., Ion-exchange chromatographic protein refolding. J. Chromatogr. A, 2010, 1217, 7265.
    39. Terpe, K., Overview of tag protein fusions: from molecular and biochemical fundamentals to commercial systems. Appl. Microbiol. Biotechnol. 2003, 60, 523.
    40. Munson, M. S. B.; Field, F. H., Chemical Ionization Mass Spectrometry. I. General Introduction. J. Am. Chem. Soc. 1966, 88, 2621.
    41. Gu, H.; Xu, K.; Xu, C.; Xu, B., Biofunctional magnetic nanoparticles for protein separation and pathogen detection. Chem. Commun. 2006, 941.
    42. Li, D.; Teoh, W. Y.; Gooding, J. J.; Selomulya, C.; Amal, R., Functionalization Strategies for Protease Immobilization on Magnetic Nanoparticles. Adv. Funct. Mater. 2010, 20, 1767.
    43. Kang, Y. S.; Risbud, S.; Rabolt, J. F.; Stroeve, P., Synthesis and Characterization of Nanometer-Size Fe3O4 and γ-Fe2O3 Particles. Chem. Mater. 1996, 8, 2209.
    44. Sun, S.; Zeng, H., Size-controlled synthesis of magnetite nanoparticles. J. Am. Chem. Soc. 2002, 124, 8204.
    45. Cushing, B. L.; Kolesnichenko, V. L.; O'Connor, C. J., Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chem. Rev. 2004, 104, 3893.
    46. Lu, A. H.; Salabas, E. L.; Schuth, F., Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew. Chem. Int. Ed. Engl. 2007, 46, 1222.
    47. Hu, X.; Yu, J. C.; Gong, J., Fast Production of Self-Assembled Hierarchical α-Fe2O3 Nanoarchitectures. J. Phys. Chem. C 2007, 111, 11180.
    48. Fisher, P. J.; Springett, M. J.; Dietz, A. B.; Bulur, P. A.; Vuk-Pavlovic, S., Immunomagnetic separation reagents as markers in electron microscopy. J. Immunol. Methods. 2002, 262, 95.
    49. Yu, C. C.; Lin, P. C.; Lin, C. C., Site-specific immobilization of CMP-sialic acid synthetase on magnetic nanoparticles and its use in the synthesis of CMP-sialic acid. Chem. Commun. 2008, 1308.
    50. Qi, D.; Zhang, H.; Tang, J.; Deng, C.; Zhang, X., Facile Synthesis of Mercaptophenylboronic Acid-Functionalized Core−Shell Structure Fe3O4@C@Au Magnetic Microspheres for Selective Enrichment of Glycopeptides and Glycoproteins. J. Phys. Chem. C 2010, 114, 9221.
    51. (a) Lin, P. C.; Chou, P. H.; Chen, S. H.; Liao, H. K.; Wang, K. Y.; Chen, Y. J.; Lin, C. C., Ethylene glycol-protected magnetic nanoparticles for a multiplexed immunoassay in human plasma. Small 2006, 2, 485;(b) Lin, P.-C.; Chen, S.-H.; Wang, K.-Y.; Chen, M.-L.; Adak, A. K.; Hwu, J.-R. R.; Chen, Y.-J.; Lin, C.-C., Fabrication of Oriented Antibody-Conjugated Magnetic Nanoprobes and Their Immunoaffinity Application. Anal. Chem. 2009, 81, 8774.
    52. Block, E.; Ofori-Okai, G.; Zubieta, J., 2-Phosphino- and 2-phosphinylbenzenethiols: new ligand types. J. Am. Chem. Soc. 1989, 111, 2327.
    53. Smith, K.; Lindsay, C. M.; Pritchard, G. J., Directed lithiation of arenethiols. J. Am. Chem. Soc. 1989, 111, 665.
    54. (a) Yu, S.; Chow, G. M., Carboxyl group (-CO2H) functionalized ferrimagnetic iron oxide nanoparticles for potential bioapplications. J. Mater. Chem. 2004, 14, 2781;(b) Harris, L. A.; Goff, J. D.; Carmichael, A. Y.; Riffle, J. S.; Harburn, J. J.; St. Pierre, T. G.; Saunders, M., Magnetite Nanoparticle Dispersions Stabilized with Triblock Copolymers. Chem. Mat. 2003, 15, 1367;(c) Govender, T.; Stolnik, S.; Garnett, M. C.; Illum, L.; Davis, S. S., PLGA nanoparticles prepared by nanoprecipitation: drug loading and release studies of a water soluble drug. J. Contr. Rel. 1999, 57, 171.
    55. Chen, Y. Y.; Huang, Y. F.; Khoo, K. H.; Meng, T. C., Mass spectrometry-based analyses for identifying and characterizing S-nitrosylation of protein tyrosine phosphatases. Methods 2007, 42, 243.
    56. (a) Ishihara, K.; Ueda, T.; Nakabayashi, N., Preparation of phospholipid polymers and their properties as polymer hydrogel membranes. Polym. J. 1990, 22, 355;(b) Ishihara, K.; Nomura, H.; Mihara, T.; Kurita, K.; Iwasaki, Y.; Nakabayashi, N., Why do phospholipid polymers reduce protein adsorption? J. Biomed. Mater. Res. 1998, 39, 323;(c) Iwasaki, Y.; Ishihara, K., Phosphorylcholine-containing polymers for biomedical applications. Anal. Bioanal. Chem. 2005, 381, 534.
    57. Bianchi, A.; Bernardi, A., Traceless Staudinger ligation of glycosyl azides with triaryl phosphines: stereoselective synthesis of glycosyl amides. J. Org. Chem. 2006, 71, 4565.
    58. 吳煥婷,國立清華大學化學研究所 博士論文,功能化磁性奈米粒子應用於目標分子純化與偵測,民國99年。
    59. 周皋羽,國立台灣大學化學系暨研究所 碩士論文,利用奈米探針結合質譜技術純化與鑑定硫基亞硝基化胜肽,民國99年。

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE