研究生: |
謝志明 Hsieh, Chih-Ming |
---|---|
論文名稱: |
多層式磁致冷系統模擬與分析 Modeling of Graded Active Magnetic Regenerator for Room-Temperature, Energy-Efficient Refrigeration |
指導教授: | 蘇育全 |
口試委員: |
蘇育全
柳克強 李志浩 呂明琸 |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 中文 |
論文頁數: | 64 |
中文關鍵詞: | 磁致冷 、多層式 、磁卡路里效應 |
外文關鍵詞: | magnetocaloric effect, graded Active magnetic regenerator, AMR |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
已有許多實驗証明沿著工作流體運作擺放適當的複數磁性材料做為蓄熱器的多層結構,能夠有效地提升磁致冷機具的效能。要如何最佳化多層式AMR (Active magnetic regenerator) 是一個屬於多重物里量耦合的問題,但同時也是對室溫磁致冷很重要的課題。截至目前為止,關於多層式AMR研究並不多,但了解多層式AMR是一件迫切且重要的事。研究多層式AMR首先面臨的是熱傳與流體力學耦合的現象,其次相較於單層的AMR結構,多層式AMR要處理非常大量的參數,如磁性材料長度的選擇、組合與材料性質,並且材料可能還需額外的研究。為了解決這些複雜的問題,使用COMSOL軟體處理熱傳與流體力學,同時利用Gennes model進行磁性材料的特性計算。在本論文中使用GdxTb(1-x)合金進行二層與三層AMR結構的研究。其研究結果証實使用雙層AMR結構能夠使得致冷能力達到二倍以上,並且三層結構能夠再優化雙層AMR結構的表現。最後提出一個First-order approximation與Cooling index能夠直接經由參數估算其組合能夠達到的致冷能力。
It has been demonstrated experimentally that grading the regenerator along the flow direction with multiple magnetocaloric materials (MCMs) with varying Curie temperatures improves the performance of magnetic refrigeration significantly. The optimization of the graded active magnetic regenerator (AMR) is a multiphysics problem, which is crucial to the realization of room-temperature magnetic refrigeration. Until now, only few models have been built and further work to understand the grading effects is urgently needed. In addition to the challenges of the coupling of magnetic, heat transfer and fluid dynamic phenomena and the vast parameter space of the graded regenerator (e.g. composition and geometry), relevant material properties of the MCMs may not yet be available for modeling. To address these issues, a COMSOL model with key material properties estimated by the mean field theory and the de Gennes model has been built. In this paper, two-segment regenerators composed of GdxTb(1-x) alloys are studied first. Compared to a pure Gd regenerator, it is demonstrated that a two-segment one can achieve a >2-time increase in cooling capacity. And three-segment one can improve the performance of two-segment cases. Furthermore, the temperature of the fluid
, which can be estimates using cooling index, is found to correlate strongly with the cooling capacity, and could potentially serve as an index for performance prediction. Finally, using the first-order approximation could directly estimate the cooling capacity with parameters. The estimation using cooling index method and first-order approximation could survey vast parameters in a short time, which can save much time.
[1] Zimm, C., Jastrab, A., Sternberg, A., Pecharsky, V., Gschneider, K., Osborne, M., Anderson, I., “Description and performance of a near-room-temperature magnetic refrigerator,” Advances in Cryogenic Engineering, 43, 1759-1766, 1998.
[2] Yu, B., Gao, Q., Zhang, B., Meng, X., Chen, Z., “Review on research of room temperature magnetic refrigeration,” International Journal of Refrigeration-Revue Internationale du Froid 26, 622-636, 2003
[3] Russek, S., Zimm, C., “Potential for cost effective magnetocaloric air conditioning system,” International Journal of Refrigeration, 29, 1366-1373, 2006.
[4] Pecharsky, V. K., Gschneider, J. K. A., “Advanced magetocaloric materials: What does the future hold? ”, International Journal of Refrigeration, 29, 1239-1429, 2006.
[5] Warburg, E., “Magnetische untersuchungen,” Annaien der Physik, 13, 141-164, 1881.
[6] Weiss, P., Picard, A., “A new thermomagnetic phenomenon,” Comptes Rendus Hebdomadaires des Seances de l’Academie des Sciences, 166, 352-354, 1918.
[7] Collins, S., Zimmerman, F., “Cyclic adiabatic demagnetization,” Physical Review, 90(5), 991-992, 1953.
[8] Heer, C., Barnes, C., Daunt, J., “The design and operation of a magnetic refrigerator for maintaining temperature below 1-Degrees-K,” Review of Scientific Instruments 25(11), 1088-1098, 1954.
[9] Brown, G., “Magnetic heat pumping near room temperature,” Journal of Applied Physics, 47, 3673-3680, 1976.
[10] Pecharsky, V., Gschneidner, K., “Giant magnetocaloric effect in Gd5(Si2Ge2),” Physical Review Letters, 78, 4494-4497, 1997.
[11] Tishin, A., Spichkin, Y., The Magnetocaloric Effect and its Applications, Institute of Physics Publishing, UK, 2003.
[12] Bruck, E., “Developments in magnetocaloric refrigeration,” Journal of Physics D-Applied Physics, 38, R381-R391, 2005.
[13] Pecharsky, V., Gschneidner, K., “Magnetocaloric effect and magnetic refrigeration,” Journal of Magnetism and Magnetic Materials, 200, 44-56, 1999.
[14] Tishin, A., “Magnetocaloric effect in the vicinity of magnetic phase transition,” Journal of Magnetism and Magnetic Materials, 184, 62-66, 1998.
[15] Kitanovski, A., Egolf, P. W., “Thermodynamics of magnetic refrigeration,” International Journal of Refrigeration, 29, 3-12, 2005.
[16] Morrish, A., The Physical Principles of Magnetism, John Wiley & Sons, Inc, 1965.
[17] Barclay, J., “The theory of an active magnetic regenerative refrigerator,” NASA STI/Recon Technical Report N, 83, 34087, 1982.
[18] Chen, F. C., Murphy, R. W., Mei, V. C., Chen, G. L., “Thermodynamic analysis of four magnetic heat-pump cycles,” Journal of Engineering for Gas Turbines and Power, 114, 715-720, 1992.
[19] Barclay, J., Sarangi, S., “Selection of regenerator geometry for magnetic refrigerator applications,” American Society of Mechanical Enginerrs, dec, 9-13, 1984.
[20] DeGregoria, A., “Modeling the active magnetic regenerator,” Advances in Cryogenic Engineering, 37, 867-873, 1991.
[21] Richard, M., Rowe, A., Chahine R., “Magnetic refrigeration: Single and multi-material active magnetic regenerator experiments,” Journal of Applied Physics, 95, 2146-2150, 2004.
[22] Hall, J., Reid, C., Spearing, I., Barclay, J., “Thermodynamics considerations for the design of active magnetic regenerative refrigerators,” Advances in Cryogenic Engineering, 41b, 1653-1664, 1996.
[23] Schumann, T. E. W., “Heat transfer: A liquid flowing through a porous prism,” Journal of Franklin Institute, 208, 405-416, 1929.
[24] Mastumoto, K., Hashimoto, T., “Thermodynamic analysis of magnetically active regenerator form 30 to 70-K with a Brayton-like cycle,” Cryogenics, 30, 840-845, 1990.
[25] Smäili, A., Chahine, R., “Thermodynamic investigations of optimum active magnetic regenerator,” Cryogenics, 38, 247-252, 1998.
[26] Li, P., Gonga, M., Yaoa, G., Wua, J., “A practical model for analysis of active magnetic regenerative refrigerators for room temperature applications,” International Journal of Refrigeration, 29, 1259-1266, 2006.
[27] Bahl, C. R. H., Peterson, T. F., Pryds, N., Smith, A., “A versatile magnetic refrigeration test device,” Review of Scientific Instruments, 79, 093906, 2008.
[28] Rowe, A., Tura, A., “Experimental investigation of a three-material layered active magnetic regenerator,” International Journal of Refrigeration, 29, 1286-1293, 2006.
[29] Jacobs, S., “Modeling and optimal design of a multiplayer active magnetic refrigeration system,” Third International Conference on Magnetic Refrigeration at Room Temperature, International Institute of Refrigeration, 2009.
[30] Aprea, C., Greco, A., Maiorino, A., “A numerical analysis of an active regenerative cascade system,” International Journal of Energy Research, 35, 177-188, 2010.
[31] Smaili, A., Chahine, R., “Thermodynamic investigations of optimum active magnetic regenerators,” Cryogenics, 38, 247-252, 1998.
[32] Peterson, T. F., “Numerical modelling and analysis of a room temperature magnetic refrigeration system,” Technical University of Denmark, Ph.D. thesis, 2007.
[33] Gschneidner, K., Pecharsky, V., Tsokol, A., “Recent developments in magnetocaloric materials,” Reports on Progress in Physics, 7, 1479-1539, 2005.
[34] Schroeder, E., Green, G., Chafe, J., “Performance predictions of a magnetocaloric refrigerator using a finite element model,” Advances in Cryogenic Engineering, 35, 1149-1155, 1990.
[35] Shir, F., Mavriplis, C., Bennett, L., la Torre, E., “Analysis of room temperature magnetic regenerative refrigeration,” International Journal of Refrigeration-Revue Internationale de Froid 28, 616-627, 2005
[36] Shah, R.K., Sekulic, D. P., “Fundamentals of heat exchanger design,” John Wiley, New York, 2003