研究生: |
李應崇 Ying-Chung Li |
---|---|
論文名稱: |
利用懸臂樑結構設計與製作之CMOS-MEMS微質量感測器 The Design and Fabrication of CMOS MEMS Mass Sensor Using Cantilever Beam Structure |
指導教授: |
盧向成
Shiang-Cheng Lu |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2006 |
畢業學年度: | 94 |
語文別: | 中文 |
論文頁數: | 66 |
中文關鍵詞: | 微質量感測器 、懸臂樑 、電容式感測 |
外文關鍵詞: | Capacitive sensing, CMOS MEMS, Cantilevers, Mass sensor |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究目的在於製作新型振動式奈米生醫感測元件,而目標將設定在以微機電技術設計並製造新穎、具高性能的微質量感測器,並結合CMOS積體電路製程完成整合型感測器晶片。希望藉由直接電路整合降低寄生電容所帶來的訊號衰減及電路噪聲放大。利用外加質量使懸臂樑的自然頻率偏移而感測微質量大小,期望達到微小化且能精確量測微質量的新型感測器。
本論文將介紹以懸臂樑為結構之CMOS MEMS微質量感測器的設計概念、製作流程以及其特性分析與量測結果探討。我們設計以CMOS標準製程製作整合型單晶片,在CMOS晶片上以乾蝕刻釋放金屬鋁及介電質二氧化矽兩材料堆疊之懸臂樑。以驅動電極驅動懸臂樑,並於懸臂樑上施加調制訊號源將驅動頻率調制到高頻,除了達到降低雜訊的優點尚能避免穿襚電流造成的假訊號。而電容式感測電路能直接量測懸臂樑的頻率響應,以便找出結構振頻。我們成功的量測到396.6kHz的結構共振頻率,並在不同操作壓力下,得到頻率響應的變化與品質因子的提升,其中最低壓下Q值可達2500。另外我們也成功的量測到沉積0.1□m二氧化矽薄膜於懸臂樑上所產生的頻率變化,驗證了自然振頻與質量變化關係,沉積4.9pg的質量產生了140Hz的頻率變化,其感測度約為350fg/Hz。
本研究論文很重要的意義在於設計製造符合標準製程,也因此更有機會量產應用於市場。除此之外,我們採用電容式的感測機制具有製程較簡易且感測不受溫度環境溫度影響的特性,非常適合應用於生化醫學的檢測。
In this paper, we present the design, fabrication, and characterization of CMOS micromachined cantilevers for mass sensing in the femto-gram range. The cantilevers consisting of multiple metal and dielectric layers are fabricated after completion of the conventional CMOS process by dry etching steps. The cantilevers are electrostatically actuated to resonance by in-plane electrodes. The frequency shift due to mass loading is detected capacitively with on-chip circuitry, in which the modulation technique is used to eliminate the capacitive feedthrough from the driving port, and to lessen the effect of the flicker noise. The highest resonant frequency of the cantilevers is measured at 396.6 kHz with a quality factor of 2500. Mass loading on cantilevers is completed by deposition of a 0.1-□m SiO2 layer. The maximum frequency shift after deposition is 140 Hz, averaging 350 fg/Hz.
[1] M. L. Roukes, “Nanoelectromechanical systems,” in Tech. Dig. 2000 Solid-State Sens. Actuator Workshop, Hilton Head Island, SC, Jun. 4–8, 2000.C.F. Quate, “Method and means of data storage using tunneling current data readout,” US Patent 4,575, 822, 1986
[2] H. G. Craighead, “Nanoelectromechanical systems,” Science, vol. 290,pp. 1532–1535, 2000.
[3] R. Berger, C. Gerber, H. P. Lang, and J. K. Gimzewski, “Micromechanics:a toolbox for femtoscale science: “toward a laboratory on atip”, Microelectron. Eng., vol. 35, pp. 373–379, 1997.
[4] Fritz J, Baller M K, Lang H P, Rothuizen H, Vettiger P, Meyer E, G¨untherodt H-J, Gerber Ch and Gimzewski J K, Science, vol. 288, p.316–318,2000.
[5] Heather A. Clark, Marion Hoyer, Martin A. Philbert, and Raoul Kopelman, Anal. Chem., vol. 71, pp.4831-4836, 1999.
[6] Heather A. Clark, Raoul Kopelman, Ron Tjalkens, and Martin A. Philbert, Anal. Chem., vol. 71, pp.4837-4844, 1999.
[7] Yi Cui, Qingqiao Wei, Hongkun Park, Charles M. Lieber, Science, vol. 293, p.1289-1292, Aug. 2001.
[8] Jing Kong, Nathan R. Franklin, Chongwu Zhou, Michael G. Chapline, Shu Peng, Kyeongjae Cho, Hongjie Dai1, Science, vol. 287, no. 5463,p. 622-625, Jan. 2000.
[9] J. Fritz, M. K. Baller, H. P. Lang, H. Rothuizen, P. Vettiger, E. Meyer, H.-J. Guntherodt, Ch. Gerber, J. K. Gimzewski, Science, vol. 288, no. 5464, p.316-318, Apr. 2000.
[10] T. Thundat, E. Finot, Z. Hu, R. H. Ritchie, G. Wu and A. Majumdar, Appl. Phys. Lett., vol. 77,no. 24, p. 4061-4063, Dec. 2000.
[11] PETER HINTERDORFER, WERNER BAUMGARTNER, HERMANN J. GRUBER, KURT SCHILCHER, AND HANSGEORG SCHINDLER, Proc. Nat. Acad. Sci., vol. 93, p. 3477-3481, Apr. 1996.
[12] Takahito Ono, Xinxin Li, and Hidetoshi Miyashita, and Masayoshi Esashi Rev. of Sci. Instr., vol.74, no.3,p. 1240-1243, Mar 2003.
[13] C. T.-C. Nguyen, L.P.B. Katehi, and G.M. Rebeiz, Proc. IEEE, vol. 86, no8, p. 1756-1768, Aug 1998.
[14] J. A. Sidles, J. L. Garbini, K. J. Bruland, D. Rugar, O. Zuger, S. Hoen, and C. S. Yannoni, Rev. Mod. Phys., vol. 67, no. 1, p. 249-265,Jan 1995.
[15] A. N. Cleland and M. L. Rouke, Nature, vol.392, p. 160, 1998.
[16] A. Cho, Science, vol. 299, p. 36-37, 2003.
[17] A. D. Armour, M. P. Blencowe, and K. C. Schwab, Phys. Rev. Lett., vol. 88, 148301, Apr 2002.
[18] M.F. Bocko and R. Onofrio, Rev. Mod. Phys., vol. 68, p. 755-799, 1996.
[19] Pál. CsabaX, Papp. Balázs, Hurst, Laurence D., Nature, vol. 421, p. 496, 2003.
[20] Z.J. Davis , Transducers ’01, Munich,Germany, 2001.
[21] Z. J. David et al., ” Fabrication and characterization of nanoresonating devices for mass detection,” J. Vac. Sci. Technol. B, vol. 18, no. 2,p.612-616, Mar/Apr 2000
[22] Zachary James Davis, Gabriel Abadal, Esko Forskn, Ole Hansen, Francesca Campabadal, Edward0 Figueras, Jaume Esteve, Jaume Verd, Francesc Perez-Murano, Xevi Bomse, Sara G. Nilsson, Ivan Maximov, Lars Montelius, Niuia Barniol and Anja Boiseo, Transducers ’03, p.496-499, Boston, 2003.
[23] J. A. Harleya and T. W. Kenny, Appl. Phys. Lett., vol. 75, no.2, p. 289-291, July 1999.
[24] Hayato SONE, Haruki OKANO, Sumio HOSAKA,” Picogram Mass Sensor Using Piezoresistive Cantilever for Biosensor”, Japanese Journal of Applied Physics , vol. 43, vo. 7B, 2004, pp. 4663–4666
[25] Vittorio Ferrari, Daniele Marioli, Andrea Taroni, Elisabetta Ranucci, and Paolo Ferruti,” Development land Application of Mass Sensors Based on Flexural Resonances in Alumina Beams”, IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL, vol. 43, no. 4, July 1996
[26] T.R. Albrecht, P. Grutter, D Horne, D Rugar, J. Appl. Phys., vol. 69,no. 2, p. 668-673, 1991.
[27] Ha0 Zhang, Mong S. Marma, Eun Sok Kim, Charles E. McKenna, and Mark E. Thompson,” Implantable Resonant Mass Sensor For Liquid Biochemical Sensing”, Micro Electro Mechanical Systems, 17th IEEE International Conference on. (MEMS), p.347 – 350 (2004)
[28] Hao Zhang, and Eun Sok Kim,” Micromachined Acoustic Resonant Mass Sensor” JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, vol. 14, no. 4,p.699-706, AUGUST 2005
[29] A. Gupta, D. Akin, and R. Bashira,” Single virus particle mass detection using microresonators with nanoscale thickness”, Appl. Phys. Lett., vol. 84, no. 11, p.1976-1978, 15 March 2004
[30] 陳美玲,國立清華大學碩士論文:振動頻率匹配之光纖干涉儀運用於飛克級之質量檢測,微機電所碩士班
[31] Veijola T, Kuisma H, Lahdenperä J and Ryhänen T 1995 Equivalent-circuit model of the squeezed gas film in a silicon accelerometer Sensors and Actuators A 48 239-248