簡易檢索 / 詳目顯示

研究生: 王 暐
Wang, Wei
論文名稱: Cu/Bi2Te3與Ni/Bi2Te3界面反應及Bi-Cu-Te與Bi-Ni-Te相圖
Cu/Bi2Te3 and Ni/Bi2Te3 interfacial reactions and Bi-Cu-Te and Bi-Ni-Te phase diagrams.
指導教授: 陳信文
Chen, Sinn-Wen
口試委員: 朱旭山
陳洋元
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 99
中文關鍵詞: 熱電材料界面反應相圖相平衡
外文關鍵詞: Thermoelectric material, Interfacial reaction, Phase diagram, Phase equilibrium
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 熱電材料具有熱電轉換特性,可應用於廢熱回收,由於能源短缺議題日益受到重視以及環保意識抬頭,熱電材料於能源上的應用備受關注。熱電材料於當今能源應用上備受關注。熱電元件的結構通常包含陣列熱電半導體、連接導電基板以組成元件,因此,熱電元件中存在許多銲點。為了避免銲料合金擴散進入熱電材料,需要在銲料與熱電材料之間加上像是Ni之擴散阻障層。熱電元件多為「銲料合金/阻障層/熱電材料」型式,不同材料界面間的反應性與穩定性對銲點性質影響甚大,也與熱電元件的品質息息相關。相圖提供基礎相平衡資料,對了解材料相變化與微結構變化非常重要。銲料/Ni/Bi2Te3為常見商用熱電模組,Cu為銲料中常見元素,與Ni有固溶性。文獻中已有對Ni/Bi2Te3界面反應進行探討。Sn/Ni(P)/Bi2Te3反應偶後置於150oC下熱處理150小時,並通以100A/cm2之電流,於Ni/Bi2Te3界面處發現Ni3Te2、NiTe以及Bi4Te5相。本計畫針對Cu/Bi2Te3界面反應進行探討,並研究其相關材料相圖,建立Bi-Cu-Te以及Bi-Ni-Te三元系統等溫橫截面圖。
    界面反應實驗中,首先製備基材碲化鉍,切片進行表面處理後電鍍上銅層,接著置於200oC以及350oC高溫爐中進行界面反應。三元相圖的建立則以純元素鉍、鎳、銅與碲配製不同組成比例之三元Bi-Cu-Te與Bi-Ni-Te合金,於200oC以及350oC高溫爐中進行熱處理,並以SEM(Scanning Electron Microscopy)、EPMA(Electron Probe Microanalysis)與XRD(X-ray Diffraction)進行界面反應生成相與相平衡樣品的微結構分析、組成分析與生成相鑑定。
    Cu/Bi2Te3反應偶在200oC下熱處理60天,於界面處發現生成約13μm之Cu2-xTe相;在350oC下熱處理5分鐘生成約455μm之反應層,由Cu側至Bi2Te3側反應層之結構為Bi相/Cu2-xTe相/Bi相/Cu過飽和溶於Bi2Te3相。相圖部份針對Bi-Cu-Te三元系統以及Bi-Ni-Te三元系統進行200oC以及350oC等溫橫截面圖之建立,Bi-Cu-Te三元系統200oC等溫橫截面圖一共確定Cu2-xTe-Bi-(Bi2)m(Bi2Te3)n、Cu2-xTe-(Bi2)m(Bi2Te3)n-Bi2Te3、Cu2-xTe-Bi2Te3-Cu3-xTe2、Cu3-xTe2-Bi2Te3-CuTe以及CuTe-Bi2Te3-Te共5個三相區,從相鄰相區可推測出Cu-Bi-Cu2-xTe與Cu2-xTe- Bi2Te3-Cu3-xTe2兩個三相區;350oC等溫橫截面圖一共確定Cu-L(Bi)-Cu2-xTe、Cu2-xTe-L(Bi)-(Bi2)m(Bi2Te3)n、Cu2-xTe-(Bi2)m(Bi2Te3)n-Bi2Te3與Cu3-xTe2-Bi2Te3-CuTe共4個三相區以及Cu2-xTe-(Bi2)m(Bi2Te3)n兩相區,Cu2-xTe-Bi2Te3-Cu3-xTe2、CuTe-Bi2Te3-L以及L-Bi2Te3–Te三相區雖未有實驗點,但仍可從相鄰相區推測其結果。
    而Bi-Ni-Te三元系統200oC等溫橫截面圖一共確定Bi-Bi3Ni-NiTe2-x 、Bi-NiTe2-x-(Bi2)m(Bi2Te3)n以及Bi2Te3-NiTe2-x-Te等三個三相區,以及一個NiTe2-x-(Bi2)m(Bi2Te3)n兩相區,(Bi2)m(Bi2Te3)n-NiTe2-x-Bi2Te3雖未有實驗點,但可從相鄰相區推測其結果;350oC等溫橫截面圖一共確定L(Bi)-Bi3Ni-NiTe2-x 、L(Bi)-NiTe2-x-(Bi2)m(Bi2Te3)n以及Bi2Te3-NiTe2-x-Te等三個三相區,以及NiTe2-x–L(Bi)與NiTe2-x-(Bi2)m(Bi2Te3)n兩個兩相區,並推測出NiTe2-x-(Bi2)m(Bi2Te3)n -Bi2Te3三相區。350oC 下之Bi相為液態,NiTe2-x–L(Bi)兩相區相較於200oC時大。與其中(Bi2)m(Bi2Te3)n-NiTe2-x-Bi2Te3三相區並無實驗點,但可藉由相鄰相區推斷。由於Ni含量較高的相區不易平衡,因此在Ni含量高的相區以虛線表示推測。


    Sustainable energy is among the most critical challenges. Thermoelectric modules can convert waste heat into electricity to enhance the energy usage efficiency and have promising applications in waste heat recovery. Thermoelectric modules are thus attracted growing attentions of governments and research institutes. Thermoelectric module is usually composed of arrays of P-N thermoelectric materials connecting to conduction plate. There are numerous joints in a thermoelectric module and the joints are critical to the reliability of products. Bi2Te3 are the most commonly used materials in commercial thermoelectric devices and are connected to Cu plate. Although barrier layers are used and the Cu plates are usually not directly attached to the thermoelectric materials, it is still essential to know the interfacial reactions between Cu and Bi2Te3 if there are no barrier layers. Phase diagrams contain information of equilibrium phases and are fundamentally important for the understanding of phase formation and transformation. Ni/Bi2Te3 interfacial reactions were investigated and the reaction layer were examined. Ni/Bi2Te3 couples were heat-treated at 150oC for 150 hrs and Ni3Te2, NiTe and Bi4Te5 phase were examined at interfacial surface. This study examines the Cu/Bi2Te3 interfacial reactions , the Bi-Cu-Te phase diagrams and the Bi-Cu-Te phase diagrams which are not available in the literature
    Bi2Te3 were prepared with Pure Bi shots and pure Te ingots then electroplated with Cu. Reaction couples were heat-treated at 200oC for 60 days. The reaction layer, Cu2-xTe phase, was examined at interfacial surface and was about 13μm. Reaction couples were heat-treated at 350oC for 5 minutes. The reaction layer, Cu2-xTe phase, Bi phase and unstable phase, was examined at interfacial surface and was about 455μm. In phase equilibrium experiment, Bi-Ni-Te alloys and Bi-Cu-Te alloys were prepared and heat-treated at 200oC and 350oC for several months. According to composition analysis, Cu2-xTe-Bi-(Bi2)m(Bi2Te3)n, Cu2-xTe-(Bi2)m(Bi2Te3)n-Bi2Te3, Cu3-xTe2-Bi2Te3-CuTe and CuTe-Bi2Te3-Te three-phase region were determined in Bi-Cu-Te 200oC isothermal section and Cu-Bi-Cu2-xTe and Cu2-xTe-Bi2Te3-Cu3-xTe2 three-phase region can be speculated by the results. In Bi-Cu-Te 350oC isothermal section, Cu-L(Bi)-Cu2-xTe, Cu2-xTe-L(Bi)-(Bi2)m(Bi2Te3)n, Cu2-xTe-(Bi2)m(Bi2Te3)n-Bi2Te3 and Cu3-xTe2-Bi2Te3-CuTe three-phase region and Cu2-xTe-(Bi2)m(Bi2Te3)n two-phase region were determined. Cu2-xTe-Bi2Te3-Cu3-xTe2, CuTe-Bi2Te3–L and L-Bi2Te3–Te three-phase region can be speculated by the results.
    In Bi-Ni-Te 200oC isothermal section,Bi-Bi3Ni-NiTe2-x, Bi-NiTe2-x-(Bi2)m(Bi2Te3)n and Bi2Te3-NiTe2-x-Te three-phase region and NiTe2-x-(Bi2)m(Bi2Te3)n two-phase region were determined, and (Bi2)m(Bi2Te3)n-NiTe2-x-Bi2Te3 three-phase region can be speculated by the results. In Bi-Ni-Te 350oC isothermal section, L(Bi)-Bi3Ni-NiTe2-x, L(Bi)-NiTe2-x-(Bi2)m(Bi2Te3)n and Bi2Te3-NiTe2-x-Te three phase region and NiTe2-x–L(Bi) and NiTe2-x-(Bi2)m(Bi2Te3)n two-phase region were determined. And NiTe2-x-(Bi2)m(Bi2Te3)n-Bi2Te3 three phase region can be speculated by the results. The Ni rich region is difficult to meet phase equilibrium and there is no ternary compound in both of two systems.

    摘要 I Abstract III 總目錄 V 圖目錄 VII 表目錄 XI 一、前言 1 二、文獻回顧與探討 6 2-1 熱電材料 6 2-1-1 熱電材料Bi2Te3 6 2-2 相平衡 7 2-2-1 Cu-Bi二元系統相平衡 7 2-2-2 Cu-Te二元系統相平衡 8 2-2-3 Ni-Bi二元系統相平衡 9 2-2-4 Ni-Te二元系統相平衡 10 2-2-5 Bi-Te二元系統相平衡 11 2-3 界面反應 13 2-3-1 Cu/Bi界面反應 13 2-3-2 Cu/Te界面反應 13 2-3-3 Ni/Bi界面反應 14 2-3-4 Ni/Te界面反應 14 2-3-5 Ni/Bi2Te3界面反應 15 三、實驗方法 16 3-1 Cu/Bi2Te3熱電模組之界面反應 16 3-2 Ni-Bi-Te相平衡合金配製 16 3-3 Cu-Bi-Te相平衡合金配製 17 四、結果與討論 18 4-1 Cu/Bi2Te3界面反應 18 4-1-1 Cu/Bi2Te3在200oC下之界面反應 18 4-1-2 Cu/Bi2Te3在350oC下之界面反應 22 4-2 Bi-Cu-Te三元相圖 31 4-2-1 Bi-Cu-Te 200oC等溫橫截面圖 31 4-2-2 Bi-Cu-Te 350oC等溫橫截面圖 47 4-3 Bi-Ni-Te三元相圖 64 4-3-1 Bi-Ni-Te200oC等溫橫截面圖 64 4-3-2 Bi-Ni-Te350oC等溫橫截面圖 80 五、結論 94 六、文獻參考 96

    [1] L. L. N. Laboratory, Estimated U. S. Energy Consumption, (2017).
    [2] E. A. Skrabek and J. W. McGrew, "Pioneer 10 and 11 RTG Performance Update", Space Nuclear Power Systems, p.587, (1987).
    [3] J. T. Jarman, E. E. Khalil and E. Khalaf, "Energy Analyses of Thermoelectric materials", International Materials Reviews, Vol. 48, pp. 45-66, (2003).
    [4] G. J. Snyder and E. S. Toberer, "Complex thermoelectric materials", Nature Materials, Vol. 7, pp. 105-114, (2008).
    [5] 朱旭山,工業材料雜誌220期,pp. 93-103,(2005)。
    [6] P. Li, L. Cai, P. Zhai, X. Tang, Q. Zhang and M. Niino, "Design of Concentration Solar Thermoelectric Generator", Journal of Electronic Materials, Vol. 39, pp. 1522-1530, (2010).
    [7] A. Zhou, T. Zhu, X. Zhao, S. Yang, T. Dasgupta, C. Stiewe, R. Hassdorf and E. Mueller, "Improved thermoelectric performance of higher manganese silicides with Ge additions", Journal of electronic materials, Vol. 39, pp. 2002-2007, (2010).
    [8] C. Chubilleau, B. Lenoir, P. Masschelein, A. Dauscher, C. Candolfi, E. Guilmeau and C. Godart, "High temperature thermoelectric properties of CoSb3 skutterudites with PbTe inclusions", Journal of Materials Science, Vol. 48, pp. 2761-2766, (2013).
    [9] J. F. Li, W. S. Liu, L. D. Zhao, and M. Zhou, "High-performance nanostructured thermoelectric materials.", NPG Asia Materials, Vol. 2, pp. 152-158, (2010).
    [10] A. Bulusu, and D. G. Walker, "Review of electronic transport models for thermoelectric materials", Superlattices and Microstructures, Vol. 44, pp. 1-36, (2008).
    [11] S. Fujimoto, S. Sano and T. Kajitani, "Analysis of Diffusion Mechanism of Cu in Polycrystalline Bi2Te3-Based Alloy with the Aging of Electrical Conductivity", Japanese Journal of Applied Physics, Vol. 46, p. 5033, (2007).
    [12] A. S. Pashinkin and V. A. Fedorov, "Phase equilibria in the Cu–Te system.", Inorganic Materials, Vol. 39, pp. 539-554, (2003).
    [13] K. Jeriomin, "On Cu-Bi Alloys", Zeitschrift für anorganische und allgemeine Chemie, Vol. 55, pp. 412-414, (1907).
    [14] W. Oelsen, E. Schurmann and D. Buchholz, "Calorimetry and Thermodynamics of Cu-Bi Alloys", Archiv für das Eisenhüttenwesen, Vol. 32, pp. 39-46, (1961).
    [15] D. J. Chakrabarti and D, E. Laughlin, "The Bi-Cu (Bismuth-Copper) System", Bulletin of Alloy Phase Diagrams, Vol. 5, pp. 148-155, (1984).
    [16] R. Blachnik, M. Lasocka and U. Walbrecht, "Phase Equilibria in the Cu-Te System", Journal of Solid State Chemistry, Vol. 48, pp. 431-438, (1973).
    [17] B. P. Buryglev, N. N. Fedorova and L. S. Tsemekhman, "Equilibrium Diagrams of the Cu-S, Cu-Se and Cu-Te Systems", Russian Journal of Inorganic Chemistry, Vol. 19, p. 1249, (1974).
    [18] H. Okamoto, "Bi-Ni (Bismuth-Nickel) ", Journal of Phase Equilibria and Diffusion, Vol. 33, p. 492, (2012).
    [19] J. Wnag, F. G. Meng, L. B. Liu and Z. P. Jin, "Thermodynamic optimization of Bi-Ni binary system", Transactions of Nonferrous Metals Society of China, Vol. 21, pp. 139-145, (2011).
    [20] K. O. Klepp and K. L. Komarek, "Transition metal-chalcogene systems. III", Monatshefte für Chemie, Vol. 103, p. 934, (1972).
    [21] R. Viswanathan, M. S. Baba, D. D. A. Raj, R. Balasubramanian, B. Saha and C. K. Mathews, "Vaporisation Thermodynamics of the Nickel-Rich Phases in the Ni-Te Binary System - A High Temperature Mass Spectrometric Study", Journal of Nuclear Materials, Vol. 149, pp. 302-311, (1987).
    [22] P. W. Lange, "Ein Vergleich zwischen Bi2Te3 und Bi2Te2S", Natuewissenschsften, Vol. 27, pp. 133-134, (1939).
    [23] P. Cucka and C. S. Barrett, "Crystal Structure of Bi and of Solid Solutions of Pb, Sn, Sb and Te in Bi", Acta Crystallographica, Vol. 15, pp. 865-872, (1962).
    [24] N. K. Abrikosov, V. F. Bankina and K. F. Kharitonovich, "Issledovanie Diagrammy Sostoyaniya Sistemy Bi-Te", Russian Journal of Inorganic Chemistry, Vol. 5, pp. 978-982, (1960).
    [25] H. Okamoto, "Bi-Te (Bismuth-Tellurium)", Binary Alloy Phase Diagrams, Vol. 1, pp. 800-801, (1990).
    [26] J. W. G. Bos, H. W. Zandbergen, M. H. Lee, P. Ong and R. J. Cava, "Structures and thermoelectric properties of the infinitely adaptive series (Bi2)m(Bi2Te3)n", Physical Review B, Vol. 75, pp. 195203-1-195203-9, (2007).
    [27] X. Hu, Q. Huang, Y. Li, Y. Liu and Z. Min, "A study on the interfacial reaction of Sn58Bi/Cu soldered joints under various cooling and aging conditions", Journal of Materials Science: Materials in Electronics, Vol.26, pp. 5140-5151, (2015).
    [28] F. Debbagh, H. Mohssine, E. L. Ameziane, M. Azizan and M. Brunel, "Physical and chemical analysis of RF sputtered Cu/Te/CdTe structures", Solar Energy Materials and Solar Cells, Vol. 31, pp. 1-8, (1993).
    [29] M. S. LEE, C. M. Liu and C. R. Kao, "Interfacial reactions between Ni substrate and the component Bi in solders", Journal of Electronic Material, Vol. 28, pp. 57-62, (1999).
    [30] S. W. Chen, T. R. Yang, H. W. Hsiao, P. H. Lin, J. H. Huang and J. D Huang, "Ni/Te and Ni/Ag2Te interfacial reactions", Materials Chemistry and Physics, Vol. 180, pp. 396-403, (2016).
    [31] L. C. Lo and A. T. Wu, "Interfacial Reactions Between Diffusion Barriers and Thermoelectric Materials Under Current Stressing", Journal of Electronic Materials, Vol. 41, pp. 3325-3330, (2012).

    QR CODE