研究生: |
陳定璿 Ting Hsuan Chen |
---|---|
論文名稱: |
動態表面粗糙度改變之微液滴致動器 Micro Droplet Actuator Driven by Dynamic Surface Roughness Effect |
指導教授: |
曾繁根
F. G. Tseng 錢景常 C. C. Chieng |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 奈米工程與微系統研究所 Institute of NanoEngineering and MicroSystems |
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 中文 |
論文頁數: | 92 |
中文關鍵詞: | 液滴 、靜電 、粗糙度 、致動器 、疏水 |
外文關鍵詞: | droplet, electrostatic, roughness, actuator, hydrophobic |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在微系統生醫檢測的流體運輸上,由於低雷諾數的特性,使黏滯性難以克服。本論文的研究以液滴操控為主,其目標在於設計製作出動態改變表面粗糙度之液滴致動器,藉靜電力吸引致動懸浮的高分子薄膜以達到動態改變表面、可逆式致動、精確定位的目的,且藉由高分子薄膜上的導電金屬層,達到屏蔽電場對液滴的影響,使液滴內分子不受外加致動能量的影響。
設計概念為採用靜電動態控制高分子薄膜上的微柱和液滴的接觸,藉由靜電吸引薄膜,使微柱產生不同的高低差,以改變液固相介面的面積比率,使接觸角依循Cassie model改變。達到在低遲滯的情況下高致動力的目的,佐以表面自由能理論和測試實驗已同時驗證致動效果,證明設計概念的可行性。
實驗結果顯示與電極平行的Spacer設計有最佳的薄膜致動量,且應用於液滴操控時,採用Pull-in的方式使致動簡化以及大位移量,在250V的輸入電壓下,可使薄膜產生10μm的位移量。同時,在接觸角的轉變上,也可達到從131∘增加到152∘的變化量。
目前完成動態表面粗糙元件,包括區域陣列式與可逆式致動,且可應用於切換液滴的疏水性質上。未來工作將放在低遲滯表面以及致動量提昇上,以使此種概念可確實應用於水滴移動。
[1] A. W. Adamson, “Physical chemistry of surface”, John Wiley & Sons, Inc., New York, pp. 385-386, 1990.
[2] M. Washizu, “Electrostatic actuation of liquid droplets for microreactor applications”, IEEEtrans. Ind. App., Vol. 34, pp. 732-737, 1998.
[3] Orlin D.Velev, et. al., “On-chip manipulation of free droplets”, Nature, Vol. 426, pp. 515-516, 2003.
[4] W. J. J. Welters and L. G. J. Fokkink, “Fast electrically switchable capillary effects”, Langmuir, Vol. 14, pp. 1535-1538, 1998.
[5] S. K. Cho, et. al., “Towards digital microfluidic circuits: creating, transporting, cutting and merging liquid droplets by electrowetting-based actuation”, IEEE 15th Int. Conf. MEMS (MEMS 02’), Las Vegas, Nevada, USA, pp. 32-35, Jan. 2002.
[6] Darsh T. Wasan, et. al., “Droplets Speeding on Surfaces”, Science, Vol 291, pp. 605-606, 2001.
[7] S. Daniel, et al., “Fast drop movements resulting from the phase change on a gradient surface”, Science, Vol. 291, pp. 633-636, 2001.
[8] K. Ichimura, et al., “Light-driven motion of liquids on a photoresponsive surface”, Science, Vol. 288, pp. 1624-1626, 2000.
[9] Joerg Lahann, et al., “A Reversibly Switching Surface”, Science, Vol 299, pp. 371-374, 2003.
[10] Taolei Sun, et al., “Reversible Switching between Superhydrophilicity and Superhydrophobicity”, Angew. Chem. Int. Ed., Vol 43, pp. 357-360, 2004.
[11] B. He and J. Lee, “Dynamic wettability switching by surface roughness effect”, IEEE 16th Int. Conf. MEMS (MEMS 03’), Kyoto, Japan, pp. 120-123, Jan. 2003.
[12] Qiongdan Xie, “Facile Creation of a Super-Amphiphobic Coating Surface with Bionic Microstructure”, Adv. Mater. 2004.
[13] M. Miwa, et al., “Effects of the surface roughnss on sliding angles of water droplets on superhydrophobic surfaces”, Langmuir, Vol. 16, pp. 5754-5760, 2000.
[14] H. Kamusewitz, et al., “The relation between Young’s equilibrium contact angle and the hysteresis on rough paraffin wax surfaces”, Colloids and Surfaces A : Physicochem. Eng. Aspects Vol 156, 271–279, 1999.
[15] J. Ge, et al., “Effects of surface treatments on the adhesion of Cu and Cr/Cu metallizations to a multifunctional photoresist”, Journal of Applied physics, Vol 92, pp. 3007-3015. 2002
[16] B. He, J. Lee, N. A. Patankar, “Contact Angle hysteresis on rough hydrophobic surface”, Colloids and Surfaces A: Physicochem. Eng. Vol 284, 101-104, 2004.