研究生: |
許勝雯 Shang-Wen Hsu |
---|---|
論文名稱: |
Using Wireless Sensors to Build Mobility Models for the Water Flow Environment 利用無線感測器建立適用於水流環境的運動模型 |
指導教授: |
金仲達
Chung-Ta King |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 資訊系統與應用研究所 Institute of Information Systems and Applications |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 英文 |
論文頁數: | 60 |
中文關鍵詞: | 無線感測網路 、運動模型 、土石流 |
外文關鍵詞: | wireless sensor networks, mobility models |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來關於無線感測網路的研究愈來愈多,小型且便宜的無線感測器,除了擁有佈建容易的優點外,微小的外型使得感測器能更接近欲觀測物體或是現象,提供即時且直接的量測數據。這些感測器利用無線通訊的方式收集數據,在時效內將這些資料傳送到後端的伺服器(sinks)。在本篇研究論文中,我們利用無線感應器的特性,以協助研究適用於描述物體在水流環境的運動模型。首先我們在無線感測器(Telosb)上加裝GPS模組,然後將所有改良過的無線感測器放入河流中,讓感測器隨著河流漂動。在感測器移動的同時收集移動軌跡和運動行為的資料,我們利用這些資料導出運動模型所需要的參數,最後利用現有的運動模型合成出軌跡資料,並且與真實的運動軌跡比較,評估這些運動模型描述物體行為在水流環境的能力。從我們的實驗結果可以得知現有的運動模型並不適用於水流環境,主要的原因是,這些模型缺乏描述地形的參數。因此,我們提出了涵蓋地形因素的運動模型以及描述物體在水流環境遇到障礙物的運動模型,並且將模擬的軌跡資料與真實的軌跡資料比較,以展現出我們提出的運動模型適用於水流環境的能力。
Wireless sensor networks (WSNs) have been studied extensively in recent years. The tiny and inexpensive wireless sensors can be deployed close to the target objects or phenomena to provide in-situ and direct measurements and to transmit the collected data to the back-end sinks in real-time through wireless connections. In this thesis, we take advantages of this characteristic of WSNs and apply it to study the mobility models of objects in a water flow. We first modify off-the-shelf wireless sensor nodes to include GPS modules. The sensors are then put on a river to collect real trajectory data when the node drifts in the river. The raw data are used to derive the parameters for representative mobility models under study. Finally, the synthetic trajectories out of these mobility models are compared with real data to evaluate their ability of modeling moving objects in water flows. Our evaluations show that existing mobility models cannot model mobile objects in water flows very well, primarily due to a lack of topographic modeling. We then propose new mobility models that take into account of topography as well as obstacles in the water flow. The new models are evaluated again using the collected real data to show their ability to model moving objects in the water flows.
[1]. B. Liang and Z. Haas,” Predictive distance-based mobility management for PCS networks,” in Proc. INFOCOM 1999. Eighteenth Annual Joint Conference of the IEEE Computer and Communications Societies, 1377-1384 vol. 3.
[2]. C. Bettstetter,“ Smooth is better than sharp: A random mobility model for simulation of wireless networks,” in Proc. MSWIM 2001. 4th ACM Int. Workshop Modeling, Anal., Simulation Wireless Mobile Syst., 19–27.
[3]. C. Tuduce and T. Gross,“ A mobility model based on WLAN traces and its validation,” in Proc. INFOCOM 2005. 24th Annual Joint Conference of the IEEE Computer and Communications Societies, 664-674 vol. 1.
[4]. D. Pompili, T. Melodia and I. F. Akyildiz,” Deployment Analysis in Underwater Acoustic Wireless Sensor Networks, ” in Proc. The First ACM International Workshop on Underwater Networks 2006, 48-55.
[5]. F. Bai, N. Sadagopan and A. Helmy,” IMPORTANT: a framework to systematically analyze the Impact of Mobility on Performance of Routing Protocols for Adhoc Networks,” in Proc. INFOCOM 2003. 22th Annual Joint Conference of the IEEE Computer and Communications Societies, 825-835 vol. 2.
[6]. G. Werner-Allen, K. Lorincz, J. Johnson, J. Lees, and M. Welsh,“ Fidelity and yield in a volcano monitoring sensor network.” in Proc. OSDI 2006. ACM Symposium on Operating System Design and Implementation, 381–396.
[7]. J. Le Boudec and M. Vojnovic,” Perfect simulation and stationarity of a class of mobility models,” in Proc. INFOCOM 2005. 24th Annual Joint Conference of the IEEE Computer and Communications Societies, 2743-2754 vol. 4.
[8]. K. Sheth, P. Tejaswi Mehta, C. Parekh, R. Bansal, S. N. Merchant, U. B. Desai, C. Thekkhath, K. Toyama, and T. Singh,“ Poster abstract-senslide: A sensor network based landslide prediction system,” in Proc. SenSys 2005. 3rd ACM Conference on Embedded Networked Sensor Systems, 280-281.
[9]. M. Erol, L. Vieira, M. Gerla,” Localization with Dive’N’Rise (DNR) beacons for underwater acoustic sensor networks, “in Proc. WUWNet 2007. ACM International Workshop on Underwater Networks, 97–100.
[10]. M. Kim, D. Kotz, and S. Kim,“ Extracting a Mobility Model from Real User Traces,” in Proc. INFOCOM 2006. 25th IEEE Annual Joint Conference of the IEEE Computer and Communications Societies, 1-13.
[11]. M. Zhao and W. Wang ,” A Novel Semi-Markov Smooth Mobility Model for Mobile Ad Hoc Networks,” in Proc. GLOBECOM 2006. 49th IEEE Global Telecommunications Conference, 1-5.
[12]. M. Zhao and W. Wang,” Design and Applications of A Smooth Mobility Model for Mobile Ad Hoc Networks,” in Proc. MILCOM 2006. 25th Military Communications Conference, 1-7.
[13]. P. Jardosh, E. M. Belding-Royer, K. C. Almeroth, and S. Suri,“ Toward realistic mobility models for mobile ad hoc networks,” in Proc. MOBICOM 2003. 9th ACM Annual International Conference on Mobile Computing and Networking, 217–229.
[14]. R. M. Iverson,“ The physics of debris flows,” in Proc. Rev. Geophys., 1997, 245–296.
[15]. T. Camp, J. Boleng, and V. Davies,“ A Survey of Mobility Models for Ad Hoc Network Research,” in Proc. WCMC 2002. Wireless Comm. & Mobile Computing, 483-502 vol. 2.
[16]. W. Hsu, T. Spyropoulos, K. Psounis, and A. Helmy,“ Modeling Time-Variant User Mobility in Wireless Mobile Networks, “ in Proc. INFOCOM 2007. 26th IEEE International Conference on Computer Communications, 758-766.
[17]. X. Hong, M. Gerla, G. Pei, and C.-C. Chiang, “ A Group Mobility Model for Ad Hoc Wireless Networks,” in Proc. MSWiM 1999. ACM International Workshop Modeling, Analysis, and Simulation of Wireless and Mobile Systems.
[18]. “Telosb”, “ http://www.tinyos.net/scoop/ ”.