研究生: |
劉峻佑 Chun-You Liu |
---|---|
論文名稱: |
具溫度補償功能之 CMOS-MEMS振盪器 Temperature-Compensated CMOS-MEMS Oscillators |
指導教授: |
李昇憲
Sheng-Shian Li |
口試委員: |
方維倫
WeiLeun Fang 盧向成 Shiang-Cheng Lu 趙昌博 Paul C.-P. Chao 吳名清 Ming-Ching Wu |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 80 |
中文關鍵詞: | CMOS-MEMS 、雙鉗音叉式共振器 、溫度補償 、微機械振盪器系統 |
外文關鍵詞: | CMOS-MEMS, DETF, Temperature Compensation, Oven Control, Oscillators |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文是利用互補式金屬氧化物半導體(Complementary Metal-Oxide-Semiconductor, CMOS)製程平台製作微機械雙鉗音叉式共振器(Double-ended Tuning Fork, DETF),並搭配TSMC 2P4M CMOS 0.35 m製程的轉阻放大器電路設計出振盪器系統。為了改善振盪器之頻率穩定度,我們透過主動式的低功率消耗加熱平台進行溫度控制,其加熱效率為140 ℃/mW;並且搭配被動式溫度補償的設計(使用材料特性)有效降低振盪器系統之頻率溫度係數(Temperature Coefficient of Frequency, TCf),其值約為2.84 ppm/℃ (未開啟加熱平台)。本論文並驗證了此振盪器系統相位雜訊無論是否啟用加熱平台皆能擁有一樣的水準,且一般的偏誤不穩定度(Bias Instability)約為32 ppb;而在啟用低功率消耗的加熱平台後之振盪器系統偏誤不穩定度僅略為提升至95 ppb。最終透過元件改善設計以及溫度控制改善整體系統性能使得元件之一階頻率溫度係數約為0.17 ppm/℃,溫度穩定度(Thermal Stability)約為4 ppm。
This work reports an ultra-low-power temperature-compensated CMOS-MEMS oscillator based on an uniform temperature design that ensures low temperature gradient of the proposed resonator to attain high frequency stability. The oven heating efficiency greater than 140˚C/mW has been achieved in this work by a proper thermal isolation design. In addition, the lowest temperature coefficient of frequency (TCf) of 2.84 ppm/˚C is also accomplished through a passive temperature compensation scheme. The performance of the ovenized oscillator is evaluated by Allan deviation where the frequency instability of 95 ppb / 32 ppb is characterized for the oven on/off conditions, respectively, which is on par with state-of-the-art silicon-based MEMS oscillators.
To further improve the performance of the oscillator, a revised CMOS-MEMS oscillator with close-to-zero TCf of 0.17 ppm/˚C is achieved by the single-anchored (SA-) design for stress releasing with passive compensation by composite materials. The overall thermal stability of 4 ppm across 140˚C temperature span has been demonstrated by the constant resistance algorithm realized by the LabVIEW system, which is equivalent to 29 ppb/˚C. In addition, the Built-in Self-Test (BIST) has been designed for the rapid thermal-cycling test, which greatly reduces the testing time from hours to minutes.
[1] R. J. Matthys, Crystal Oscillator Circuits. New York: John Wiley & Sons, 1983.
[2] W. A. Marrison and J.W. Horton, “Precision determination of frequency,” Proc. Inst. Radio Eng., vol. 16, no. 4, pp. 137–154, Feb. 1928.
[3] W. A. Marrison, “The evolution of the quartz crystal clock,” Bell System Technical Journal, vol. 27, no. 3, pp. 510–588, Jul. 1948.
[4] J. R. Vig, “Temperature stable crystal oscillator,” IEEE Trans. Ultrason., Ferroelectr., Freq. Control, vol. 42, no. 4, pp. 797–799, Jul. 1995.
[5] A. Ballato and J. R. Vig, “Static and dynamic frequency-temperature behavior of singly and doubly rotated, oven-controlled quartz resonators,” Proc. IEEE Annu. Symp. Freq. Contr., pp. 180–188, Jun. 1978.
[6] I. Balaz and M. Minarik, “Towards an OCXO with infrared heater,” Proc. IEEE Int. Freq. Contr. Symp., pp. 674–680, Jun. 1996.
[7] M. Vaish, “A high precision quartz oscillator with performance comparable to rubidium oscillators in many respects,” Proc. IEEE Int. Freq. Contr. Symp., pp. 752–760, Jun. 1996.
[8] C. T.-C. Nguyen and R. Howe, “Microresonator frequency control and stabilization using an integrated micro oven,” Tech. Dig. Transducers’93, pp. 1040–1043, Jun. 1993.
[9] C. T.-C. Nguyen, “Micromechanical resonators for oscillators and filters,” Proc. IEEE Ultrason. Symp., vol. 1, pp. 489–499, Nov. 1995.
[10] M. A. Huff, S. D. Senturia, and R. T. Howe, “Thermally isolated microstructure suitable for gas sensing applications,” Tech. Dig. IEEE Solid-State Sens., Actuator Workshop, pp. 47–50, Jun. 1988.
[11] C. M. Jha, M. A. Hopcroft, S. A. Chandorkar, J. C. Salvia, M. Agarwal, R. N. Candler, R. Melamud, B. Kim, and T. W. Kenny, “Thermal isolation of encapsulated MEMS resonators,”, J. Microelectromech. Syst., vol. 17, no. 1, pp. 175-184, Feb. 2008.
[12] B. Kim, M. Hopcroft, C. M. Jha, R. Melamud, S. A. Chandorkar, M. Agarwal, K. L. Chen, W. T. Park, R. Candler, G. Yama, A. Partridge, M. Lutz, and T. W. Kenny, “Using MEMS to build the device and the package,” Tech. Dig. Transducers’07, pp. 331-334, Jun. 2007.
[13] B. Kim, M. A. Hopcroft, R. Melamud, C. M. Jha, M. Agarwal, S. A. Chandorkar, and T. W. Kenny, “CMOS compatible wafer-scale encapsulation with MEMS resonators,” ASME InterPACK, pp. 499-504, Jul. 2007.
[14] B. Kim, R. N. Candler, M. Hopcroft, M. Agarwal, W.-T Park, and T. W. Kenny,“Frequency stability of wafer-scale film encapsulated silicon based MEMS resonators,” Sens. Actuators A, Phys., vol. 136, no. 1, pp. 125–131, May 2007.
[15] B. Kim, R. N. Candler, M. Hopcroft, M. Agarwal, W.-T. Park, and T. W. Kenny, “Frequency stability of wafer-scale encapsulated MEMS resonators,” Tech. Dig. Transducers’05, pp. 1965-1968, Jun. 2005.
[16] B. Kim, R. N. Candler, M. Hopcroft, M. Agarwal, W.-T Park, J. Li, and T. W. Kenny, “Investigation of MEMS resonators Characteristics for long-term operation and wide temperature variation condition,” Proc. ASME International Mechanical Engineering Congress and RD&D Expo, pp. 413-416, Nov. 2004.
[17] M. A. Hopcroft, H. K. Lee, B. Kim, R. Melamud, S. Chandorkar, M. Agarwal, C. M. Jha, J. Salvia, G. Bahl, H. Mehta, and T. W. Kenny, “A high-stability MEMS frequency reference,” Tech. Dig. Transducers’07, pp. 1307-1309, 10-14 Jun. 2007.
[18] M. A. Hopcroft, “Silicon Micromechanical Resonators for Frequency References,” Ph.D. thesis in Mechanical Engineering, Stanford University, 2007.
[19] G. K. Fedder, R. T. Howe, T. J.-K. Liu, and E. P. Quevy, “Technologies for cofabricating MEMS and electronics,” Proc. of the IEEE, vol. 96, no. 2, pp. 306-322, Feb. 2008.
[20] A. Tazzoli, M. Rinaldi and G. Piazza “Ovenized high frequency oscillators based on aluminum nitride contour-mode MEMS resonators,” Proc. IEEE Int. Electron Devices Meeting (IEDM’11), pp. 20.2.1-20.2.4, Dec. 2011.
[21] R. Jansen, M. Libois, X. Rottenberg, M. Lofrano, J. De Coster, R. Van Hoof, S. Severi, G. Van der Plas, W. de Raedt, H.A.C. Tilmans, S. Donnay and J. Borremans, “A CMOS-compatible 24 MHz poly-SiGe MEMS oscillator with low-power heating for frequency stabilization over temperature,” Proc. 2011 Joint Conf. IEEE Int. Freq. Contr. Symp. – Eur. Freq. Time Forum (IFCS-EFTF’11), pp.11-15, May 2011.
[22] Z. Wu, and Mina Rais-Zadeh, “A Temperature-stable piezoelectric MEMS oscillator using a CMOS PLL circuit for temperature sensing and oven control,” J. Microelectromech. Syst., vol. 24, no. 6, pp. 1744-1758, Jun. 2015.
[23] K. E. Wojciechowski, M. S. Baker, P. J. Clews, and R. H. Olsson, “A fully integrated oven controlled microelectromechanical oscillator—Part I: design and fabrication” J. Microelectromech. Syst., vol. 24, no. 6, pp. 1782-1794, Jun. 2015.
[24] C.-C. Lo, “CMOS-MEMS resonators for mixer-filter applications,” Ph.D. thesis, Carnegie Mellon University, 2008.
[25] J. Teva, G. Abadal, J. Verd, F. Torres, J. L. Lopez, J. Esteve, F. Perez-Murano, and N. Barniol, “From VHF to UHF CMOS-MEMS monolithically integrated resonators,” Tech. Dig. MEMS’08, 13-17, pp. 82-85, Jan. 2008.
[26] M.-H. Li, C.-Y. Chen, C.-S. Li, C.-H. Chin, and S.-S. Li, “A monolithic CMOS-MEMS oscillator based on an ultra-low-power ovenized micromechanical resonator,” J. Microelectromech. Syst., vol. 24, no. 2 pp. 360-372, Apr. 2015.
[27] F. D. Bannon III, J. R. Clark, and C. T.-C. Nguyen, “High-Q HF microelectromechanical filters,” IEE J. Solid-State Circuit, vol. 35, no. 4, pp. 512-526, Apr. 2000.
[28] M.-H. Li, W.-C. Chen, and S.-S. Li, “Mechanically-coupled CMOS-MEMS free-free beam resonator arrays with enhanced power handling capability,” IEEE Trans. Ultrason., Ferroelectr., Freq. Control , vol. 59, no. 3, pp. 346-357, Mar. 2012.
[29] H. M. Lavasani, A. K. Samarao, H. Casinovi, and F. Ayazi, “A 145-MHz low phase-noise capacitive silicon micromechanical oscillator,” Proc. 2008 IEEE Int. Electron Devices Meeting (IEDM’08), pp675-678, Dec. 2008.
[30] F. P. Incropera and D. P. Dewitt, Fundamentals of Heat and Mass Transfer, 5th ed. New York: Wiley, 2002.
[31] M. N. Ozisik, Heat Conduction, 2nd ed. New York: Wiley, 1993.
[32] R. Melamud, S.A. Chandorkar, Bongsang Kim, Hyung Kyu Lee, J.C. Salvia, G. Bahl, M.A. Hopcroft, and T.W. Kenny, “Temperature-insensitive composite micromechanical resonators,” J. Microelectromech. Syst., vol. 18, no. 6, pp. 1409-1419, Oct. 2009.
[33] C. T. –C. Nguyen, and R. T. Howe, “An integrated CMOS micromechanical resonator high-Q oscillator,” IEEE J. Solid-State Circuit, vol. 34, pp. 440-455, Apr. 1999.
[34] W.-C. Chen, W. Fang, and S.-S. Li, “VHF CMOS-MEMS oxide resonators with Q > 10,000,” Proc. IEEE Int. Freq. Contr. Symp. , pp. 1-4, May 2012.
[35] R. D. Blevins, Formulas for Natural Frequency and Mode Shape, Krieger Pub Co, 2001.
[36] G. Bahl, R. Melamud, B. Kim, S. A. Chandorkar, J. C. Salvia, M. A. Hopcroft, D. Elata, R. G. Hennessy, R. N. Candler, R. T. Howe, and T. W. Kenny, “Model and Observations of Dielectric Charge in Thermally Oxidized Silicon Resonators,” J. Microelectromech. Syst., vol. 19, no. 1, pp. 162-174, Feb. 2010.
[37] G. Bahl, J. C. Salvia, R. Melamud, B. Kim, R. T. Howe, and T. W. Kenny, “AC Polarization for Charge-Drift Elimination in Resonant Electrostatic MEMS and Oscillators,” J. Microelectromech. Syst., vol. 20, no. 2, pp. 355-364, Apr. 2011.
[38] C.-Y. Liu, M.-H. Li, C.-Y. Chen, and S.-S. Li, “An ovenized CMOS-MEMS oscillator with isothermal resonator and sub-mW heating power,” to be presented, IEEE Int. Freq. Contr. Symp., May 2016.