簡易檢索 / 詳目顯示

研究生: 劉書成
論文名稱: 互補式金氧半影像感測器效能參數萃取方法之研究
Study on Parameters Extraction Method of CMOS Image Sensor
指導教授: 金雅琴
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 84
中文關鍵詞: 影像感測器電容暗電流量子效率
外文關鍵詞: APS, CBCM, Dark current, Quantum Efficiency, CMOS
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 因為製程上便宜,加上跟金氧半的製程有高整合相容性,可以跟其他週邊電路整合在一起,互補式金氧半影像感測器在影像感測器的領域上,已佔有很重要的地位,並且在一些比較低階的影像感測器應用方面已經慢慢取代了傳統的電荷耦合元件(CCD)。跟傳統的CCD比較,互補式金氧半影像感測器仍有很大的改善空間,如有較大的暗電流、低動態範圍都是急須改善克服的課題。而影像感測器的參數萃取對於改善其效能是最基礎的。但是對於一些互補式金氧半影像感測器的效能參數而言,如光二極體的電容、暗電流其數量級都十分的小,很難直接加以去量測,需要很大的測試元件面積及高解析度的精密儀器才能準確的量測。本論文提出一個新的測試方法,採用CBCM的架構來測量光二極體的電容值。它不要需要很大的面積且也不需要一個額外已知電容大小的電容器。此外,藉由量測出光二極體的電容值後,可以估算出影像感測器的暗電流與其量子效率等效能參數,並且有助於建立一個影像感測器的像素模型(Pixel Model),供設計者使用SPICE模擬影像感測器照光的響應,以利影像感測器的設計,進而改善影像感測器的效能。從實驗的結果看出,藉由本論文所提出的方法,所萃取出來的參數數值與使用傳統方式所萃取出的參數比較,可以發現其有相當高的準確度。是故本論文提出的方法不需要額外大面積的考量且有一定的準確度。


    The parameter measurements of CMOS image active sensor are fundamental for the performance optimization of CMOS APS. However, most critical parameters of a APS, such as capacitance and dark current, are difficult to measure directly. A simple method based on CBCM for measuring the capacitance of CMOS active image sensor has been proposed. Samples fabricated by 0.35μm standard CMOS process are designed and measured. Using the extracted capacitance value from this CBCM technique, the quantum efficiency and dark current of CMOS APS can be accurately predicted .The proposed methods for parameters extraction in a CMOS APS are proven to provide high accuracy without the need of large-area test patterns.

    Abstract................................................i 摘要....................................................ii 誌謝....................................................iii 內文目錄................................................iV 圖片目錄................................................V 表格目錄................................................Vi 第一章 序論..........................................1 第二章 互補式金氧半影像感測器效能參數萃取............3 2.1 互補式金氧半影像感測器基本架構與操作原理.........3 2.2 互補式金氧半影像感測器效能參數簡介...............4 2.2.1 暗訊號.........................................5 2.2.2 靈敏度.........................................6 2.2.3 輸出振幅.......................................8 2.2.4 動態範圍.......................................8 2.2.5 位井容量.......................................8 2.2.6 量子效率.......................................10 2.2.7 固定雜訊.......................................10 2.3 參數萃取的挑戰...................................10 2.3.1 暗電流.........................................11 2.3.2 電容值.........................................11 2.3.3 量子效率.......................................28 第三章 光二極體電容與量子效率測量方法..................28 3.1 光二極體電容組成分析與回顧.....................28 3.1.1 光二極體電容組成分析..........................29 3.1.2 電容量測方法回顧..............................30 3.2 新式電容值量測架構與操作方式...................30 3.2.1 電容比例法....................................31 3.2.2 CBCM(Charge Base Capacitance Measurement )...32 3.3 量子效率的量測.................................32 3.3.1 n+/p Diode的量子效率..........................32 3.3.2 量子效率的量測方法............................34 3.4 總結...........................................50 第四章 實驗結果與討論..................................50 4.1 Test Key 設計與量測系統建立.....................50 4.2 電容量測結果...................................50 4.2.1利用電容比例法量測結果.........................50 4.2.2 CBCM量測結果..................................51 4.2.3 光電流量測結果................................52 4.2.4 電容準確度....................................53 4.3 暗電流量測結果..................................54 4.4 量子效率量測結果................................55 4.5 實驗結果討論....................................56 第五章 結論.............................................82 參考文獻................................................83

    [1]. B. Ackland and A. Dickinson, “Camera on a chip,”
    ISSCC, pp. 22-25, 1996.
    [2]. E.R. Fossum, “CMOS image sensors: Electronic camera-
    on- a-chip,” IEEE Trans. Electron Devices, vol. 44,
    pp. 1689-1698, Oct. 2001.
    [3]. P. Lee, R. Gee, M. Guidash, T. Lee, and E. R. Fossum,
    “An active pixel sensor fabricated using CMOS/CCD
    process technology,” presented at 1995 IEEE workshop
    on CCD’s and Advanced Image Sensors, Dana Point, CA,
    Apr. 20-22, 1995.
    [4]. H. S. P. Wong, R. T. Chang, E. Crabbe, and P. D.
    Agnello, “CMOS Active Pixel Image Sensors Fabricated
    Using a 1.8-V, 0.25-um CMOS Technology,” IEEE, Trans.
    Electron Devices, vol. 45, pp.889-894, April 1998.
    [5]. S. Mendis, S. E. Kenmeny, R. Gee, B. Pain, and E. R.
    Fossum, “Process in CMOS active pixel image sensors,”
    Charge-Coupled Devices and Solid State Optical Sensors
    IV, Proc. SPIE, vol.2172, pp.19-29, 1994.
    [6]. J. Woo, D. J. Min, J. Kim, and W. Kim, “A 600-dpi
    capacitive finger-print sensor chip and image synthesis
    technique,” IEEE J. Solid-State Circuits, vol.34, pp.
    469-475.
    [7]. J. Huppertz, R. Hauschild, B. J. Hosticka, T. Kneip,
    S. Muller, and M. Schwarz, ‘‘Fast CMOS imaging with
    high dynamic range,’’ in Proc. IEEE Workshop on
    Charge-Coupled Devices and Advanced Image Sensors, 1997.
    [8]. S. Decker, R. McGrath, K. Brehmer, and C. Sodini,
    ‘‘A 2563256 CMOS imaging array with wide dynamic range
    pixels and column parallel digital output,’’ in Proc.
    ISSCC 1998, pp. 176–177 1998.
    [9] Hsiu-Yu Cheng and Ya-Chin King, “A CMOS image sensor
    with dark-current
    cancellation and dynamic sensitivity operations,”
    IEEE Trans. Electron Devices, vol. 50, pp.91-95, Jan.
    2003.
    [10] H. D. Lee and J. M. Hwang, “Accurate Extraction of
    Reverse Leakage Current Components of Shallow
    Silicided p+-n Junction for Quarter- and Sub-Quarter-
    Micron MOSFET’s”, IEEE Trans. Electron Devices, vol.
    45, No. 8, August 1998.
    [11] N. V. Loukianova, H. O. Folkerts, J. P. V. Maas, D. W.
    E. Verbugt, A. J. Mierop, W. Hoekstra, E. Roks, and A.
    J. P. Theuwissen, “Leakage Current Modeling of Test
    Structures for Characterization of Dark Current in
    CMOS Image Sensors,” IEEE Trans. Electron Devices,
    2003 pp.1-7.
    [12] Ho-Ching Chien; Shou-Gwo Wuu; Dun-Nian Yaung; Chien-
    Hsien Tseng; Jeng-Shyan Lin; Wang, C.S.; Chin-Kung
    Chang; Yu-Kung Hsiao; “Active pixel image sensor
    scale down in 0.18 /spl mu/m CMOS technology”,
    Electron Devices Meeting, 2002. IEDM '02. Digest.
    International8-11 Dec. 2002 Page(s):813 – 816
    [13] BSIM3v3.2.2 Manual,chapter3,3.2 alphabetical glossary
    of BSIM3 parametaters, page(s)180-183
    [14] H. Tian, X.Q. Liu, S.H. Lim, S. Kleinfelder and A. El
    Gamal, Active Pixel Sensors Fabricated in a Standard
    0.18 um CMOS Technology, In Proceedings of the SPIE
    Electronic Imaging '2001 conference, Vol. 4306, San
    Jose, CA, January 2001.
    [15] Chung-Yu Wu; Yu-Chuan Shih; Jeng-Feng Lan; Chih-Cheng
    Hsieh; ChienChang Huang; Jr-Houng Lu;“Design,
    optimization, and performance analysis of new
    photodiode structures for CMOS active-pixel-sensor
    (APS) imager applications ”, Sensors Journal, IEEE
    Volume 4, Issue 1, Feb. 2004 Page(s):135 - 144
    [16] Chen, J.C.; McGaughy, B.W.; Sylvester, D.; Chenming
    Hu;,“An on-chip, attofarad interconnect charge-based
    capacitance measurement (CBCM) technique”, Electron
    Devices Meeting, 1996., International 8-11 Dec. 1996
    Page(s):69 - 72
    [17] Sell, B.; Avellan, A.; Krautschneider, W.H.;”Charge-
    based capacitance measurements (CBCM) on MOS
    devices,” Device and Materials Reliability, IEEE
    Transactions on Volume 2, Issue 1, March 2002 Page
    (s):9 - 12
    [18] A. El Gamal “Image Sensors Course Lecture Notes 2 :
    Silicon Photodetectors ” @ Stanford University Spring
    2004-2005
    [19] D. Yang, H. Min, B. Fowler, A. El Gamal, M. Beiley,
    and K. Cham,” Test Structures for Characterization
    and Comparative Analysis of CMOS Image Sensors,” In
    Proceedings of Advanced Focal Plane Array European
    Conference, Berlin, Germany, October 1996.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE