簡易檢索 / 詳目顯示

研究生: 游庭榮
論文名稱: 聚二甲基矽氧烷(PDMS)微懸臂樑的製作與熱噪聲之量測
Thermomechanical noise measurement of polydimethylsiloxane microcantilevers fabricated by multilayer soft lithography
指導教授: 楊雅棠
口試委員: 莊嘉揚
李昇憲
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2012
畢業學年度: 101
語文別: 中文
論文頁數: 50
中文關鍵詞: 懸臂樑多層次軟性微影熱噪聲楊氏係數共振頻彈性常數
外文關鍵詞: cantilever, multilayer soft-lithography, thermomechanical noise, Young’s modulus, resonance frequency, spring constant
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 聚二甲基矽氧烷(PDMS)微懸臂樑結構在生物細胞、活細胞、與軟性材料的奈米機械量測領域可是非常有用的,因此為了快速得知聚二甲基矽氧烷材料的機械特性,我們提供了利用多層次軟性微影的方法製作聚二甲基矽氧烷微懸臂樑,並且量測其熱噪聲,再由熱噪聲的量測可得知聚二甲基矽氧烷材料依造不同比例混的楊氏係數,我們量測聚二甲基矽氧烷微懸臂樑共振頻與品質因子的範圍分別在405 Hz到1.63 kHz與5~10,且經過我們的計算,我們聚二甲基矽氧烷微懸臂樑的彈性常數~10-4 N/m,比一般商品化原子力顯微鏡微懸臂樑小100倍甚至更小,且最小力量解析度大約在皮牛頓的範圍,因此我們未來可以利用它來量測生物力學,甚至可做到單分子細胞生物力學的量測。


    Polydimethylsiloxane micro structures such as cantilevers have been shown useful for nanomechanical measurement of biomolecules, living cells, and soft matter. As a fundamental characterization, we report the thermomechanical noise measurement of flextual modes of polydimethylsiloxane cantilevers, fabricated multilayer soft-lithography. From the resonance frequency data, we extract the values of Young’s moduli for different cross linking ratios. Our devices have measured resonance frequencies and quality factor ranging from 405 Hz to 1.63 kHz and from 5 to 10. The spring constants is ~10-4 N/m, 100 times smaller than commercially available atomic force microscope cantilever and the force resolution is in the pico newton range. Our experimental data and analysis show that such cantilevers will be capable of performing the nanomechanical measurement at single molecular level.

    誌謝 i 中文摘要 ii Abstract iii 目錄 iv 圖目錄 (List of Figure) vi 表目錄 (List of Table) viii 一、 緒論 1 1-1 研究動機 1 1-2 文獻回顧 3 1-3 PDMS材料機械特性簡介 10 1-4 微懸臂樑熱噪聲簡介 11 二、 系統架設與測試 14 2-1 光槓桿原理 14 2-2 傳統的原子力顯微鏡架構 15 2-3 四象限光二極體感測器 16 2-4 四象限光二極體感測器之測試 17 2-5 光學系統架設 19 2-6 光學系統測試 21 三、 PDMS微懸臂樑的製作與量測 25 3-1 PDMS微懸臂樑的製作 25 3-2 PDMS微懸臂樑之熱噪聲的量測方法與結果 27 四、 結論 31 附錄 32 A-1 原子力顯微鏡微懸臂樑測試樣品製作 32 A-2 溫控載台架設 37 A-3 資料擷取硬體概論 42 A-4 資料擷取軟體撰寫概論 44 中英專有名詞對照表 46 參考文獻 48

    [1] M. Cha et al.,“Biomolecular detection with a thin membrane transducer,”Lab on a chip,8, 932-937, (2008).

    [2] S. Sang and H. Witte,“A novel PDMS micro membrane biosensor based on the analysis of surface stress,” Biosensors and bioelectronics,25, 2420-2424, (2010).

    [3] J. L. Tan, J. Tien, D. M. Pirone, D. S. Gray, K. Bhadriraju,and C. S. Chen,“Cells lying on a bed of microneedles: An approach to isolate mechanical force,” Proc. Natl. Acad. Sci. U.S.A.,100, 1484 (2003).

    [4] Y. Zhao and X. Zhang,“Adaptation of flexible polymer fabrication to cellular mechanics study,”Appl. Physics Lett.,87, 144101, (2005).

    [5] J. Park et al.,“Real-Time Measurement of the Contractile Forces of Self-Organized Cardiomyocytes on Hybrid Biopolymer Microcantilevers,”Anal. Chem. ,77, 6571, (2005).

    [6] D. N. Hohne, J. G. Younger, and M. J. Solomon,“Flexible microfluidic device for mechanical property characterization of soft viscoelastic solids such as bacterial biofilms,”Langmuir,25, 7743, (2009).

    [7] M. A. Unger, H. P. Chou, T. Thorsen, A. Scherer, and S. R. Quake,“Monolithic Microfabricated Valves and Pumps by Multilayer Soft Lithography,”Science,288, 113, (2000).

    [8] D. C. Duffy, J. C. McDonald, O. J. A. Schueller, and G. M. Whiteside,“Rapid Prototyping of Microfluidic Systems in poly(dimethylsiloxane),”Anal. Chem. ,70, 4974, (1998).

    [9] T. Thorsen, S. J. Maerkl and S. R. Quake,“Microfluidic Large-Scale
    Integration,”Science,298, 580, (2002).

    [10] S. A. Vanapalli, M. H. G. Dutis, and F. Mugele,“Microfluidics as a functional tool for cell mechanics,” Biomicrofluidics,3, 012006, (2009).

    [11] X. Q. Brown, K. Ookawa, and J. Y. Wong,“Evaluation of polydimethylsiloxane scaffolds with physiologicallyrelevant elastic moduli: interplay of substrate mechanics and surface chemistry effects on vascular smooth muscle cell response,” Biomaterials,26, 3123, (2005).

    [12] J. C. Lotter, W. Olthius, P. H. Veltink, and P. Bergreld,“The mechanical properties of the rubber elastic polymer polydimethylsiloxane for sensor applications,” J. Micromech.Microeng.,7, 145, (1997).

    [13] F. Scneider, T. Fellner, J. Wilde, and U. Wallrabe,“Mechanical properties of silicones for MEMS,” J. Micromech. Microeng.,18, 065008, (2008).

    [14] Y. Xiang and D. A. Lavan,“Analysis of soft cantilevers as force transducers,”Appl. Phys. Lett.,90, 133901, (2007).

    [15] I. K. Lin, Y. M. Liao, Y. Liu, K. S. Ou, K. S. Chen, and X. Zhang,“Viscoelastic mechanical behavior of soft microcantilever-based force sensors,” Appl. Phys. Lett.,93, 251907, (2008).

    [16] E. P. Kartalov, C. Walker, C. R. Taylor, and W. F. Andersen, and A. Scherer, “Microfluidic vias enable nested bioarrays and autoregulatory devices in Newtonian fluids,” PNAS,103, 12280, (2006).

    [17] A. Alessandrini and P. Facci,“AFM: a versatile tool in biophysics,”Meas. Sci Technol.,16, R65, (2005).

    [18] J. W. H. Chon, P. Mulvaney, and J. S. Sader,“Experimental validation of theoretical models for the frequency response of atomic force microscope cantilever beams immersed in fluids,” J. Appl. Phys.,87, 3878, (2000).

    [19] K. E. Petersen and C. R. Guarnieri,“Young's modulus measurements of thin films using micromechanics,” J. Appl. Phys.,50, 6762, (1979).

    [20] L. D. Landau and E. M. Lifshitz,“Theory of elasticity,”3rd ed.,(Pergamon,New York,1986) p.102.

    [21] M. S. Kim, J. H. Choi, J. H. Kim, Y. K. Park,“Accurate determination of spring constant of atomic force microscope cantilevers and comparison with other methods,”Measurement,43, 520, (2010).

    [22] P. Hinterdorfer and Y. F. Dufrene,“Detection and localization of single molecular recognition events using atomic force microscopy,”Nature Methods,3, 347, (2006).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE