簡易檢索 / 詳目顯示

研究生: 高振裕
Kao, Chen-Yu
論文名稱: 軟性電子之印刷式奈米材料與元件研究
Studies on the Printable Nanomaterials and Devices for Flexible Electronic
指導教授: 周更生
Chou, Kan-Sen
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 211
中文關鍵詞: 軟性電子印刷電子奈米材料氧化物半導體奈米銀
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究目的為製備可應用於軟性電子之功能性奈米材料,最後整合這些奈米材料以噴墨法製作全噴印電子元件,工作內容有奈米材料微粒合成、材料分析、奈米級分散、噴墨技術、材料電性測量等,內容分為四部分。
    一、奈米銀粒徑控制與特性研究
    本研究首先使用還原力強之硼氫化鈉作為還原劑,以PVP作為分散劑,成功製備出平均粒徑介於9nm - 100nm間之奈米銀。藉由分析此一系列不同平均粒徑奈米銀,吾人對奈米銀的粒徑與導電特性作了完整的解釋。由TGA分析計算出PVP在奈米銀表面之飽和吸附量約5mg/m2,厚約4.2nm,事實上奈米銀的燒結與導電特性皆受到PVP包覆層的影響。平均粒徑大於60nm之奈米銀因其中PVP所佔體積分率低於粒子堆積孔隙率,在常溫乾燥後有最佳導電率約1x10-4Ω-cm,平均粒徑小於15nm之奈米銀則因PVP體積分率過高,銀微粒呈現彼此無接觸之均勻分散而無法導電。加熱有助於改善導電率,在200℃以下是為PVP中水分移除與銀微粒中晶粒燒結,當加熱到200℃時銀催化部分PVP在較低溫分解,使銀顆粒得以接觸,熱處理溫度達250℃以上時因銀催化大部分PVP分解,故即使PVP含量很高之銀膠體亦可形成導電膜。

    二、奈米銀佈線之無電電鍍銅電路製作研究
    研究顯示銅成膜品質受銀微粒之單位面積分佈量影響,每平方公分109個粒子以上較佳。當所使用之奈米銀粒徑為50nm時,噴墨塗佈催化層之銀墨水銀含量需高於1wt%,而當使用之奈米銀平均粒徑為20nm時銀含量僅需0.1wt%效果即十分良好。此奈米銀催化之銅鍍層可與物理方法粗糙化之PET表面形成很好的附著,而基材粗糙度Ra在0.4μm以下銅鍍層表面較平整,銅膜電阻率約為2μΩ-cm與純銅接近。使用電腦控制繪圖機在預處理之PET表面塗佈奈米銀塗佈線路,經無電電鍍銅可獲得與原圖案相同且附著良好之銅導線。

    三、奈米InGaZnO製備與其溶液法薄膜電晶體特性研究
    本實驗藉由控制共沈澱程序獲得勻相之In-Ga-Zn氫氧化物,再分別以鍛燒法獲得平均20nm 之非結晶及平均60nm之結晶相InGaZnO粒子 以水熱法獲得平均60nm之含結晶水之In-Ga-Zn化合物微粒。後續以CMC及PAA-NH4將奈米粒子穩定分散於水溶液中,以PVB將奈米粒子穩定分散於醇類溶液中,達到了能夠塗佈成膜的目的。而此IGZO膠體溶液所製備薄膜電晶體顯示出具有因電場大小而開關電流的特性,其載子遷移率為1.3~2.3cmV-1s-1,遠優於使用純氧化鋅製作之TFT,極具實用價值。

    四、全噴墨式電子元件技術研究
    最後本研究則整合了奈米銀噴墨、奈米太酸鋇噴墨、奈米IGZO噴墨,利用商用印表機製作出全噴墨之電子元件,包含導線、薄膜電容器、薄膜電晶體等,而如整合薄膜電容器與薄膜電晶體則可形成一個記憶體單元。


    1. 緒論 1 1.1. 前言 1 1.2. 研究動機 目的與內容 2 2. 奈米銀粒徑控制與特性研究 5 2.1. 文獻回顧 5 2.1.1. 奈米銀製備 5 2.1.2. 奈米銀於印刷式導電線路之應用 9 2.2. 實驗 14 2.2.1. 實驗藥品 14 2.2.2. 實驗儀器 14 2.2.3. 實驗架構 15 2.2.4. 奈米銀之製備 15 2.2.5. 粒徑與型態鑑定 16 2.2.6. 導電度測量 16 2.3. 結果與討論 17 2.3.1. 奈米銀粒徑控制 17 2.3.2. 奈米銀特性分析 26 2.3.3. 奈米銀之熱行為 34 2.3.4. 奈米銀膠體之導電應用 39 2.4. 結論 46 2.5. 參考文獻 47 3. 奈米銀佈線之無電電鍍銅電路製作研究 55 3.1. 文獻回顧 55 3.1.1. 可撓式印刷電路板(FPCB)簡介 55 3.1.2. 無電電鍍銅簡介 58 3.1.3. 正向法製作無電電鍍導線 59 3.2. 實驗 65 3.2.1. 藥品 65 3.2.2. 實驗設備 66 3.2.3. 實驗架構 67 3.2.4. 無電電鍍銅 68 3.2.5. 無電電鍍層分析 69 3.2.6. 奈米銀催化層之佈線 69 3.2.7. PET之表面處理 70 3.2.8. 表面附著力測試 71 3.2.9. 彎折疲勞測試 73 3.3. 研究結果與討論 75 3.3.1. 奈米銀塗佈量對無電電鍍銅之影響 75 3.3.2. 無電電鍍銅層之生成速率 78 3.3.3. 無電電鍍銅層之附著力 81 3.3.4. 選擇性無電電鍍銅線路之製作 82 3.3.5. PET 基板之表面處理 86 3.3.6. PET基板之無電電鍍銅 92 3.3.7. PET基板之導電線路製作 97 3.4. 結論 99 3.5. 參考文獻 100 4. 奈米INGAZNO製備與其溶液法薄膜電晶體特性研究 103 4.1. 文獻回顧 103 4.1.1. 薄膜電晶體(Thin-film transistor) 103 4.1.2. 可印刷式薄膜電晶體相關研究 103 4.1.3. 金屬氧化物半導體工作原理與特性 113 4.1.4. 多元金屬氧化物In-Ga-Zn-O之半導體特性 118 4.2. 實驗 125 4.2.1. 藥品 125 4.2.2. 實驗設備儀器 126 4.2.3. 研究架構 127 4.2.4. 共沉澱 128 4.2.5. 製備IGZO奈米粒子 128 4.2.6. 奈米IGZO分析 129 4.2.7. IGZO 膠體製備 129 4.2.8. IGZO之薄膜電晶體製作 129 4.3. 結果與討論 131 4.3.1. In-Ga-Zn之共沉澱 131 4.3.2. 鍛燒法製備In-Ga-Zn氧化物奈米微粒 143 4.3.3. 水熱法製備InGaZnO 奈米微粒 149 4.3.4. InGaZnO微粒之分散 168 4.3.5. 溶液法IGZO 薄膜電晶體之製作與測試* 189 4.4. 結論 195 4.5. 參考文獻 197 5. 全噴墨式電子元件技術研究 202 6. 總結與展望 207 6.1. 總結 207 6.2. 未來展望 209

    Bell W.C., M.L. Myrick, “Preparation and characterization of nanoscale silver colloids by two novel synthetic routes”, Journal of Colloid and Interface Science, 242, 300 (2001)
    Boccuzzi F., A. Chiorino, M. Manzoli, D. Andereeva, T. Tabakova, L. Ilieva, V. Iadakie, “Gold, silver and copper catalysts supported on TiO2 for pure production”, Catalysis Today, 75, 169 (2002)
    Cai M., J.L. Chen, J. Zhou, “Reduction and morphology of silver nanoparticles via liquid- liquid method”, Applied surface science, 226, 422 (2004)
    Callegari A., D. Tonti, M. Chergui, “Photochemically grown silver nanoparticles with wavelength-controlled size and shape”Nano Letters, Vol.3, 1565 (2003)
    Carddenas-Trivino G., V.V. L, C. Munoz, “Silver colloids from nonaqueous solvent”, Materials Research Bulletin, Vol. 33, 645 (1998)
    Caswell K.K., C.M. Bender, C.J. Murphy, “Seedless, surfactantless wet chemical synthesis of silver nanowires”, Nano Letters, Vol. 3, 667 (2003)
    Chen D., L. Gao, “Large-scale growth and end-to-end assembly of silver nanorods by PVP-directed polyol process”, Journal of Crystal Growth, 264, 216 (2004)
    Chen R., D.S. Xu, G.I. Guo, “Silver telluride nanowires prepared by dc electrodeposition in porous anodic alumina templates”, Journal of Materials Chemistry, 12, 2435 (2002)
    Chen S., D.L. Caroll, “Synthesis and characterization of truncated triangular silver nanoplates”, Nano Letters, vol. 2, 1003 (2002)
    Chen S., Z. Fan, D.L. Carroll, “Silver nanodisks: synthesis, characterization, and self-assembly”, J. Phys. Chem. B, 106, 10778 (2002)
    Chou K.S., C.Y. Ren ,“Synthesis of nanosized silver particles by chemical reduction method”, Materials Chemistry and Physics, 64, 241 (2000)
    Chou K.S., Y.S. Lai ,“Effect of polyvinyl pyrrolidone molecular weight on the formation of nanosized silver colloids”, Materials Chemistry and Physics, 83, 82 (2004)
    Du Y., Y. Fang, “Assignment of change transfer absorption band in optical absorption spectra of the adsorbate-silver colloid system”, Spectrochemica Acta Part A, 60, 535 (2004)
    Egorova E.M., A.A. Revina, “Synthesis of metallic nanoparticles in reverse micelles in the presence of quercetin”, Colloids and surfaces, 168, 87 (2000)
    Esumi K., T. Hosoya, A. Suzuki, K. Torigoe, “Formation of gold and silver nanoparticles in aqueous solution of sugar-persubstituted poly(amidoamine) dendrimers” Journal of Colloid and Interface Science, 226, 346 (2000)
    Felidj N., G.L.J. Pantigny, J. Aubard, “A new approach to determine nanoparticle shape and size distribution of SERS-active gold-silver mixed colloid”, New J. Chem., 725 (1998)
    Hayashi C.,“Ultrafine particles”, J. Vac. Sci. Technol. A5(4), 1375 (1987)
    Henglein A., M. Giersig, “Formation of colloidal silver nanoparticles: capping action of citrate”, J. Phys. Chem. B, 103, 9533 (1999)
    Hong Y.K., H. Kim, G. Lee, W. Kim, J. Park, J.W. Cheon, J.A. Kob, “Controlled two-dimensional distribution of nanoparticles by spin-coatiog method”, Applied Physics Letters, vol 80, 844 (2002)
    Huang C.Y., H.J. Chiang, J.C. Huang, S.R. Sheen, “Synthesis of nanocrystalline Ag-Pd Alloys by chemical reduction method”, Nanostructured Materials, Vol. 10, 1393 (1998)
    Jeunieau L., J.B. Nagy, “Adsorption of pseudoisocyanine on nanoparticles of silver halides”, Colloids and surfaces, 151, 419 (1999)
    Jiang Z.J., C.Y. Liu, Y. Liu, “Formation of silver nanoparticles in an acid-catalyzed silica colloidal solution”, Applied Surface Science, 233, 135 (2004)
    Jin J.H., S.U. Hong, J. Won, Y.S. Kang, “Spectroscopic for molecular structure and complexation of silver polymer electrolytes”, Macromolecules, 33, 4932 (2000)
    Jin J.H., S.U. Hong, Y.S. Kang, “Spectroscopic studies molecular structure and complexation of silver polymer electrolytes”, Macromolecules, 33, 4932 (2000)
    Khanna P.K., V.V.V.S. Subbarao, “Nanosized silver powder via reduction of silver nitrate by sodium formaldehydesulfoxylate in acidic pH medium”, Material Letters, 57,2242 (2003)
    Kim K. Y., Y.T. Choi, D.J. Seo, S.B. Park, “Preparation of silver colloid and enhancement of dispersion stability in organic solvent”, Materials Chemistry and Physics, 88, 377 (2004)
    Komarneni S., D. Li, B. Newalkar, H. Katsuki, A.S. Bhalla , “Microwave-polyol process for Pt and Ag nanoparticles”, Langmuir, 18, 5959 (2002)
    Kumar A., H. Joshi, R. Pasricha, A.B. Mandale, M. Sastry, “Phase transfer of silver nanoparticles from aqueous organic solutions using fatty amine molecules”, Journal of Colloid and Interface Science, 264, 396 (2003)
    Lakhwani S., M. N. Ranaman, “Adsorption of polyvinylpyrrolidone (PVP) and its effect on the consolidation of suspensions of nanocrtstalline CeO2 particles”, Journal of Material Science, 34, 3909 (1999)
    Lin X.Z., X. Teng , H. Yang, “Direct dispersed sliver nanoparticles using a single-source precursor” , Langmuir , 19 , 10081 (2003)
    Liu Y., C.Y. Liu, L.B. Chen, Z.Y. Zhang,“Adsorption of cations onto the surfaces of silver nanoparticles”, Journal of Colloid and Interface Science, 257, 188 (2003)
    Liu X.J., Wang C.P., Jiang R.Z., Ohnuma I., Kainuma R., Ishida K., “Thermodynamic calculation of phase diagram and phase stability with nano-size particles”,International Journal of Modern Physics B Vol. 19, Nos. 15, 16 & 17, 2645 (2005)
    Maillard M., S. Giorgio, M.P. Pileni, “Silver nanodisks”, Advanced Materials, 14, 1084 (2002)
    Nersisyan H.H. , J.H. Lee, H.T. Son, D.Y. Maeng, “A new and effective chemical reduction method for preparation of nanosized silver power and colloid dispersion”, Materials Research Bulletin, 38, 949 (2003)
    Park J., V. Privman, E. Matijevic, “Model of formation of monodispersed colloid”, J. Phys. Chem, 105, 11630 (2001)
    Park J. W. and S.G. Baek,” Thermal behavior of direct-printed lines of silver nanoparticles”,Scripta Materialia, 55, 1139 (2006)
    Plyuto Y., J.M. Berquier, C. Jacquiod, C. Richolleau, “Ag nanoparticles synthesized in template-structured mesoporous silica films on a glass substrate”, Chem. Commum., 1653 (1999)
    Privman V., D.V. Goia, J. Park, E. Matijevic, “Mechanism of formation of monodispersed colloids by aggregation of nanosize precursors”, Journal of Colloid and Interface Science, 213, 36 (1999)
    Qi W.H., M.P. Wang, “Size and shape dependent melting temperature of metallic nanoparticles”, Materials Chemistry and Physics, 88, 280 (2004)
    Quinten M., “The color of finely dispersed nanoparticles”,Applied Physics B, 73, 317 (2001)
    Rivas L., S. Sanchez-Cortes, J. V. Garcia-Ramos, G. Morcillo, “Mixed silver/gold colloids: a study of their formation morphology, and surface-enhanced Raman activity”, Langmuir, 16, 9722 (2000)
    Roucoux A., J. Schulz, H. Patin, “Reduced transition metal colloids: a novel family of reusable catalysts”, Chem. Rev. 102, 3757 (2002)
    Shin H.S., H.C. Choi, Y. Jung, S.B. Kim, H.J. Song, H.J. Shin, “Chemical and size effect of nanocomposites of silver and polyvinyl pyrrolidone determined by X-ray photoemission spectroscopy”, Chemical Physics Letters, 383, 418 (2004)
    Shirtcliffe N., U. Nickel, S. Schneider, ‘Reproducible preparation of silver sols with small pareicle size using borohydrine of larger particles”, Journal of Colloid and Interface Science, 211, 122 (1999)
    Silvert P.Y., R. Herrea-Urbina , K. Tekaia-Elhsissen , “Preparation of colloidal silver dispersions by the polyol process Part2.-Mechanism of particle formation”, J. Mater. Chem., 7(2), 293 (1997)
    Silvert P.Y., R. Herrea-Urbina , K. Tekaia-Elhsissen , “Preparation of colloidal silver dispersions by the polyol process Part1.-Synthesis and characterization”, J. Mater. Chem., 6, 573 (1996)
    Slistan-Grijalva A., R. Herrera-Urbina , J.F. Rivas-Silva , M. Avalos-Borja , F.F. Castillon , A. Posada-Amarillas , “Assessment of growth of silver nanoparticles synthesized from an ethylene glycol-silver nitrate- polyvinylpyrrolidone solution”, Physica , E 25 , 438 (2005)
    Sondi I., D.V. Goia, E. Matijevic , “Preparation of hightly concentrated stable dispersion of uniform silver nanoparticles”, Journal of Colloid and Interface Science, 260, 75 (2003)
    Song K. C., S. M. Lee, T. S. Park, and B. S. Lee “Preparation of colloidal silver nanoparticles by chemical reduction method” Korean J. Chem. Eng., 26(1), 153 (2009)
    Sun J. and S.L. Simon, “The melting behavior of aluminum nanoparticles”Thermochimica Acta, 463, 32 (2007)
    Sun Y. and Y. Xia, “Shape-controled synthesis of gold and silver nanoparticles”, Science, vol. 298, 5601, 2176 (2002)
    Sun Y., Y. Yin, B.T. Mayers, T. Herricks, “Uniform silver nanowires synthesis by reducing AgNO3 with ethylene glycol in the process of seeds and poly (vinyl pyrrolidone)”, Chem Mater, 14, 4736 (2002)
    Taleb A., C. Petit, M. pileni, “Optical properities of self-assembled 2D and 3D superlattices of silver nanopareicles”, J. Phys. Chem., 102, 2214 (1998)
    Tsuji T., N. Watanabe, M. Tsuji, “Laser induced morphology change of silver colloids: formation of nano-size wires”, Applied surface science, 211, 189 (2003)
    Tymecki L., E. Zwierkowska , S. Glab, R. Koncki, “Strip thick-film silver ion-selective electrodes”, Sensor and Actuators B Chemical, 96, 482 (2003)
    Wang W., S. Efrima, O. Regev, “Directing oleate stabilized nanosized silver colloids into organic phases”, Langmuir, 14, 602 (1998)
    Wu S., M. Shuyuan “Preparation of ultrafine silver powder using ascorbic acid as reducing agent and its application in MLCI”, Materials Chemistry and Physics, 89, 423 (2005)
    Yakutik I.M., G.P. Shevcchenko, S.K. Rakhmanov, “The formation of monodisperse spherical silver particles”, Colloids and Surfaces, 242, 175 (2004)
    Yin B., H. Ma, S. Wang, S. Chen,”Electrochemical synthesis of silver nanoparticles under protection of poly(N-vinylpyrrolidone)”, J. Phys. Chem., 107, 8898 (2003)
    Zhang J., P. Chen, C.H. Sun, X.J. Hu, “Sonochemical synthesis of colloidal silver catalysts for reduction of complexing silver in DTR system”, Applied Catalysis A, 266, 49 (2004)
    Zhang J., X.L. Liu, Z.C. Cui, G. Zhang, B. Zhao, B. Yang, “Thin films of Ag nanoparticles prepared from the reduction of AgI nanoparticles in self-assembled films”, Journal of Colloid and Interface Science, 255, 115 (2002)
    Zeng P., and S. Zajac, P.C. Clapp and J.A. Rifkin,”Nanoparticle sintering simuations”Material Science and Engineering A252, 301 (1998)
    Zhu J.J., Q.F. Qiu, H. Wang, J.R. Zhang, J.M. Zhu, Z.Q. Chen, “Synthesis of silver nanowires by a sonoelectrochemical method”, Inorganic Chemistry Communications, 5, 242 (2002)
    沈鐘,趙振國,王果庭,“膠體與表面化學,化學工業出版社,2004
    Akamatsu, K., S. Ikeda, H. Nawafune, and H. Yanagimoto,” Direct Patterning of Copper on Polyimide Using Ion Exchangeable Surface Templates Generated by Site-Selective Surface Modification”, J. AM. CHEM. SOC., 126, 10822 (2004)
    Bieri, N. R., J. Chung, S.E. Haferl, D. Poulikakos, and C. P. Grigoropoulos, “Microstructuring by printing and laser curing of nanoparticle solutions”, Applied Physics Letters, 82, 3529 (2003)
    Cai M., J.L. Chen, J. Zhou, “Reduction and morphology of silver nanoparticles via liquid- liquid method”, Applied surface science, 226, 422 (2004)
    Carddenas-Trivino G., V.V. L, C. Munoz, “Silver colloids from nonaqueous solvent”, Materials Research Bulletin, Vol. 33, 645 (1998)
    Carmichael, T. B., S. J. Vella, and A. Afzali,” Selective Electroless Metal Deposition Using Microcontact Printing of Phosphine-Phosphonic Acid Inks”, Langmuir, 20, 5593 (2004)
    Chrisey, D. B., “The power of directwriting”, Science, Aug 11, 879 (2000)
    Chen, D.S., Y. Li, Q. H.Lu, J.Yin, Z. K. Zhu,” Selective silver seeding on laser modified polyimide for electroless copper plating”, Applied Surface Science, 246, 167 (2005)
    Cheng, K., M.H. Yang, W. W. W. Chiu, C. Y. Huang, J. Chang, T. F. Ying, and Y. Yang,” Ink-Jet Printing, Self-Assembled Polyelectrolytes, and Electroless Plating: Low Cost Fabrication of Circuits on a Flexible Substrate at Room Temperature”, Macromol. Rapid Commun., 26, 247 (2005)
    Chou K.S., C.Y. Ren ,“Synthesis of nanosized silver particles by chemical reduction method”, Materials Chemistry and Physics, 64, 241 (2000)
    Chou K.S., Y.S. Lai ,“Effect of polyvinyl pyrrolidone molecular weight on the formation of nanosized silver colloids”, Materials Chemistry and Physics, 83, 82 (2004)
    Fuller, S. B., E. J. Wilhelm, and J. M. Jacobson, “Ink-jet printed nanoparticle microelectromechanical systems”, Journal of Microelectromechanical systems, 11, 54 (2002)
    Hardikar V.V., D.V. Goia , E. Matijevic, “Adhesion of silver particles on aluminum beads”, Colloids and Surfaces, 159, 121 (1999)
    Hidber, P.C., W.Helbig, E. Kim, and G. M. Whitesides,” Microcontact Printing of Palladium Colloids: Micron-Scale Patterning by Electroless Deposition of Copper”, Langmuir, 12, 1375 (1996)
    Hong Y.K., H. Kim, G. Lee, W. Kim, J. Park, J.W. Cheon, J.A. Kob, “Controlled two-dimensional distribution of nanoparticles by spin-coatiog method”, Applied Physics Letters, vol 80, 844 (2002)
    Kim, S.H., S.W. Na, N.E. Lee, Y.W. Nam, Y.H. Kim,”Effect of surface roughness on the adhesion properties of Cu/Cr films on polyimide substrate treated by inductivitely coupled oxygen plasma”, Surface & Coating Tech. ,200, 2072 (2005)
    Liu, Z. C. Q.G. Heb, P. Hou, P.F. Xiao, N.Y. Heb, Z. H. Lub,” Electroless plating of copper through successive pretreatment with silane and colloidal silver”, Colloids and Surfaces A: Physicochem. Eng. Aspects, 257–258, 283 (2005)
    Magdassi, S., A. Bassa, Y. Vinetsky, and A. Kamyshny, ”Silver nanoparticles as pigments for water-based ink-jet inks”, Chem. Mater., 15, 2208 (2003)
    Sondi I., D.V. Goia, E. Matijevic , “Preparation of hightly concentrated stable dispersion of uniform silver nanoparticles”, Journal of Colloid and Interface Science, 260, 75 (2003)
    Subramanian,V. et al, ”Progress Toward Development of All-Printed RFID Tags :Materials, Processes, and Devices,” IEEE, 93, 8, 1330 (2005)
    Szczech, J. B., C. M. Megaridis, D. R. Gamota, J. Zhang, “Fine-line conductor manufacturing using drop-on-demand PZT printing technology”, IEEE Transactions on Electronics packaging manufacturing, 25, 26 (2002)
    Szczech, J. B., C. M. Megaridis, “Ink jet processing of metallic nanoparticle suspensions for electronic circuitry fabrication”, Microscale Thermophysical Engineering, 8, 327 (2004)
    Yang, C.C., C.C. Wan, Y.Y. Wang,” Synthesis of Ag/Pd nanoparticles via reactive micelles as templates and its application to electroless copper deposition”, Journal of Colloid and Interface Science ,279 ,433 (2004)
    金進興, ”軟性電路板材料全書” 全華出版社, 2007
    Ahn, J. H. et al,”High-Speed Mechanically Flexible Single-Crystal Silicon Thin-Film Transistors on Plastic Substrates,” IEEE Electron Device Letters, 27, 6 (2006)
    Baoquan Sun and Henning Sirringhaus Solution-Processed Zinc Oxide Field-Effect Transistors Based on Self-Assembly of Colloidal Nanorods Nano Lett., Vol. 5, No. 12 (2005)
    Bieri, N. R., J. Chung, S.E. Haferl, D. Poulikakos, and C. P. Grigoropoulos, “Microstructuring by printing and laser curing of nanoparticle solutions”, Applied Physics Letters, 82, 3529 (2003)
    Byeong-Yun Oh, Min-Chang Jeong, Moon-Ho Hamand Jae-Min Myoung Effects of the channel thickness on the structural and electrical characteristics of room-temperature fabricated ZnO thin-film transistors Semicond. Sci. Technol., 22, 608 (2007)
    Shekar B. C., J. Lee and S.W. Rhee,” Organic Thin Film Transistors: Materials, Processes and Devices”, Korean J. Chem. Eng., 21(1), 267 (2004)
    Cherie R. Kagan, Paul Andry, “Thin-film transistors”, chapter 2
    Chrisey, D. B., “The power of directwriting”, Science, Aug 11, 879 (2000)
    David B., Laura L, Conal E. “High-mobility ultrathin semiconducting films prepared by spin coating”, Nature 428, 299 (2004)
    Fuller, S. B., E. J. Wilhelm, and J. M. Jacobson, “Ink-jet printed nanoparticle microelectromechanical systems”, Journal of Microelectromechanical systems, 11, 54 (2002)
    Gun Hee Kim, “Formation mechanism of solution-process nano crystalline IGZO”, Journal of electrochemical society 156, H7 (2009)
    Hoffman,R. L. et al., “ZnO-based transparent thin-film transistors,” Applied Physics Letters 82, 733 (2003)
    Kim, Y. H. et al,” Organic TFT Array on a Paper Substrate, “ IEEE electron device letters, 25, 10, 702 (2004)
    Koshi Okamura, Norman Mechau, Donna Nikolova, and Horst Hahn, “Influence of interface roughness on the performance of nanoparticulate zinc oxide field-effect transistors ”, Appl. Phys. Lett. 93, 083105 (2008)
    Lim W., S.-H. Kim, Yu-Lin Wang, J. W. Lee,a D. P. Norton, and S. J. Peartonb,” Stable room temperature deposited amorphous InGaZnO4 thin film transistors” J. Vac. Sci. Technol. B 26(3) (2008)
    Lin,Y. Y. et al,” Pentacene-Based Organic Thin-film Transistors” , IEEE Transitions on Electron Devices, 44, 8, 1325 (1997).
    Mikawa. M. “Characteristion of ZnO-InO transparent conducting films by PLD”, Materials Research Bulletin 40, 1052 (2005)
    Moon Y. K., D.Y. Moon, Sih Lee, S. H. Lee, and J. W. Park, “Effects of oxygen contents in the active channel layer on electrical characteristics of Zn-O based thin film transistors”, J. Vac. Sci. Technol. B 26(4), 1472 (2008)
    Naoko A., Hiroshi H., Toshimi F., Motoyuki T., Koichi A. and Hiroaki I. “Photo-reduction of Amorphous and Crystalline ZnO Films”, Jpn. J. Appl. Phys. 41, 3909 (2002)
    Nomura K., H. Ohta, and H. Hosono, “Thin-film transistor fabricated in single-crystalline transparent oxide semiconductor”, Science 300, 1269 (2003)
    Nomura, K. et al, ”Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors,” nature, 432, 25, 488 (2004)
    Nomura, K., A. Takagi, T. Kamiya, H. Ohta, M. Hirano, and H. Hosono,” Amorphous Oxide Semiconductors for High-Performance Flexible Thin-Film Transistors” Japanese Journal of Applied Physics, 45(5B), 4303 (2006).
    Nomura, K., A. Takagi, T. Kamiya, H. Ohta, M. Hirano, and H. Hosono, “Local coordination structure and electronic structure of the large electron mobility amorphous oxide semiconductor In-Ga-Zn-O: Experiment and ab initio calculations”, Physical review B 75, 035212 (2007).
    Oh B.Y., M.C.Jeong, M.H. Ham and J.M. Myoung” Effects of the channel thickness on the structural and electrical characteristics of room-temperature fabricated ZnO thin-film transistors”, Semicond. Sci. Technol., 22 , 608 (2007)
    Patakfalvi, R., A. Oszko, and I. Dekany. 2003. Synthesis and characterization of silver nanoparticle/kaolinite composites. Colloids and Surfaces a-Physicochemical and Engineering Aspects 220 (1-3):45 (2003)
    Sazonov A., D. Striakhilev, C.H. Lee, and A. Nathan,”Low-temperature Materials and Thin File Transistor for Flexible Electronics,” IEEE, 93, 8, 1420-1428, (2005)
    Scott A. Wood, Iain M. Samson, The aqueous geochemistry of gallium, germanium,indium and scandium, Ore Geology Reviews 28, 57 (2006)
    Sheraw, C. D., L. Zhou, J. R. Huang, D. J. Gundlach, T. N. Jackson, M. G. Kane, I. G. Hill, M. S. Hammond, J. Campi, B. K. Greening, J. Francl and J. West“Organic thin-film transistor-driven polymer-dispersed liquid crystal displays on flexible polymeric substrates” Applied Physics Letters,80(6), 1088 ( 2002)
    Shimoda T., Y. Matsuki, M. Furusawa, T. Aoki, I. Yudasaka, H. Tanaka, H. Iwasawa, D. Wang, M. Miyasaka and Y. Takeuchi,” Solution-processed silicon films and transistors”, Nature, 440,6,783 (2006)
    Steven E. M., A. F. Vornbrock, P.C. Chang, and V. Subramanian“Low-voltage inkjetted organic transistors for printed RFID and display applications” IEEE, (2005)
    Subramanian, V., Paul C. Chang, Josephine B. Lee, Steven E. Molesa, and Steven K. Volkman, “Progress Toward Development of All-Printed RFID Tags :Materials, Processes, and Devices,” IEEE, 93, 8, 1330 (2005)
    Subramanian, V., Paul C. Chang, Josephine B. Lee, Steven E. Molesa, and Steven K. Volkman, “Printed Organic Transistors for Ultra-Low-Cost RFID Applications” IEEE TRANSACTIONS ON COMPONENTS AND PACKAGING TECHNOLOGIES, 28( 4),742 (2005)
    Szczech, J. B., C. M. Megaridis, D. R. Gamota, J. Zhang, “Fine-line conductor manufacturing using drop-on-demand PZT printing technology”, IEEE Transactions on Electronics packaging manufacturing, 25, 26 (2002)
    Szczech, J. B., C. M. Megaridis, “Ink jet processing of metallic nanoparticle suspensions for electronic circuitry fabrication”, Microscale Thermophysical Engineering, 8, 327 (2004)
    Sweatman, D., “Organic Devices: A Review”, MICROELECTRONIC ENGINEERING RESEARCH CONFERENCE ,(2001)
    Wood S. A., I. M. Samson, “The aqueous geochemistry of gallium, germanium,indium and scandium”, Ore Geology Reviews 28 , 57 (2006)
    Yabuta, H., M. Sano, K. Abe, T. Aiba, T. Den, H. Kumomi, K. Nomura, T. Kamiya, and H. Hosono, “High-mobility thin-film transistor with amorphous InGaZnO4 channel fabricated by room temperature rf-magnetron sputtering,” Appl. Phys. Lett., 89, 112123 ( 2006).
    Yang Y.H., S. S. Yang, C.Y. Kao, and K.S. Chou” Chemical and Electrical Properties of Low-Temperature Solution-Processed In–Ga–Zn-O Thin-Film Transistors” IEEE ELECTRON DEVICE LETTERS, VOL. 31, 4,329 (2010(a))
    Yang Y.H., S. S. Yang, C.Y. Kao, and K.S. Chou”Characteristics Enhancement of Solution Processed In-Ga-Zn Oxide Thin Film Transistors by Laser Annealing” The Journal of the Society for Information Display,(2010(b))
    高濂, 孫靜, 劉陽橋,”奈米粉體的分散及表面改性”,五南出版社,2005
    楊明輝,“透明導電膜”, 藝軒圖書出版社, 2006

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE