研究生: |
楊淳芝 Yang, Chun-Ji |
---|---|
論文名稱: |
STEAM教學融入我國中小學課程提升學習效益之系統性文獻分析 Systematic Literature Analysis on the Integration of STEAM Teaching into the Curriculum of Primary and Secondary schools in R.O.C to Improve Learning Effectiveness |
指導教授: |
王子華
Wang, Tzu-Hua |
口試委員: |
周金城
Chou, Chin-Cheng 邱富源 Chiu, Fu-Yuan |
學位類別: |
碩士 Master |
系所名稱: |
竹師教育學院 - 課程與教學碩士在職專班 Department of Education and Learning Technology |
論文出版年: | 2023 |
畢業學年度: | 111 |
語文別: | 中文 |
論文頁數: | 229 |
中文關鍵詞: | STEAM 、學習效益 、系統性文獻分析 |
外文關鍵詞: | STEAM, Learning Effectiveness, Systematic Literature Analysis |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究期望透過系統性文獻分析法,了解與分析目前STEAM教育融入我國國中小課程之現況。研究蒐集民國102年至112年間,主題與STEAM教育融入我國國中小課程相關,以中文發表的碩博士論文與期刊,做整理與歸納分析,研究者選定三個電子資料庫之文獻,研究分為「相關文獻蒐集與篩選」及「資料分析」兩階段,共分析87篇文獻,作為STEAM教育融入我國國中小課程之具體指引。研究發現:STEAM教育不受教育階段、學習主題及課程領域之限制,能夠廣泛的應用到教學者的課程中,達到推廣效果;STEAM教育融入我國國中小課程所選用的教學法,不拘限於單一種制式規定,教學者可以考量教學目標、教學主題及學習者狀態後,選用或設計不同教學模式做應用,顯示了STEAM教育融入我國國中小課程之教學法具有多樣性;不論以何種教學法將STEAM教育融入課程中,皆能提升學習成效與學習動機,使學習者持正向肯定之態度,顯示目前我國關於STEAM融入課程所使用之教學法皆為有效教學法。最後,歸納研究結論如下:
1. STEAM教育融入我國國中小課程之教學現況具有廣泛性。
2. STEAM教育融入我國國中小課程之教學法具有多樣性。
3. STEAM教育融入我國國中小課程之學習效益為正相關。
關鍵詞:STEAM、學習效益、系統性文獻分析
This study hopes to understand and analyze the current situation of STEAM education being integrated into the curriculum of primary and secondary schools in my country through systematic literature analysis. The research collects and summarizes the papers and periodicals published in Chinese on topics related to the integration of STEAM education into primary and secondary school curriculum in R.O.C from 2013 to 2023. The researcher selects documents from three electronic databases. The research is divided into In the two stages of "relevant literature collection and screening" and "data analysis", a total of 87 literatures were analyzed, as a specific guide for the integration of STEAM education into the curriculum of primary and secondary schools in our country. The research found that: STEAM education is not limited by the education stage, learning theme and curriculum field, and can be widely applied to the courses of teachers to achieve the promotion effect; STEAM education is integrated into the teaching methods selected by primary and secondary schools in our country, and is not limited to a single one The system stipulates that teachers can choose or design different teaching modes for application after considering the teaching objectives, teaching topics and learners' status, which shows that the teaching methods of STEAM education integrated into the curriculum of primary and secondary schools in our country are diverse; no matter what kind of teaching method will be used The integration of STEAM education into the curriculum can improve learning effectiveness and learning motivation, and make learners have a positive and positive attitude. It shows that the current teaching methods used in our country's STEAM integration courses are all effective teaching methods. Finally, the research conclusions are summarized as follows:
1. The current situation of STEAM education integrated into the teaching of primary and secondary schools in our country is extensive.
2. The teaching methods of STEAM education integrated into the curriculum of primary and secondary schools in our country are diverse.
3. The learning benefits of STEAM education integrated into the curriculum of primary and secondary schools in our country are positively correlated.
Keywords: STEAM, Learning Effectiveness, Systematic Literature Analysis
一、 中文部分
方建文(2021)。基於概念圖的自律學習模式對學生的STEM學習成就和高層次思考能力之影響。﹝博士論文。國立臺灣科技大學﹞臺灣博碩士論文知識加值系統。 https://hdl.handle.net/11296/b8mfsk。
王子華與林紀慧 (2018) 。「清華 STEAM 學校」推動創新數理人才在地培育機制。科技部科學教育實作學門計畫電子期刊,(12)。引自:https://esep.colife.org.tw/12/journal
王伯恆(2023)。探討運用STEAM 6E教學法在藝術課程學習對問題解決能力、批判思考能力、創造力以及自律學習能力之影響。﹝碩士論文。國立臺南大學﹞臺灣博碩士論文知識加值系統。 https://hdl.handle.net/11296/2w4wcd。
王為國(2021)。STEAM教育之教師專業問題與因應建議。臺灣教育評論月刊,10(5),115-119。https://www.airitilibrary.com/Publication/alDetailedMesh?DocID=P20130114001-202105-202105030020-202105030020-115-119
伍昱玟(2022)。探析新冠肺炎疫情下英國全民運動之發展。﹝碩士論文。國立臺灣體育運動大學﹞臺灣博碩士論文知識加值系統。 https://hdl.handle.net/11296/7xz39c。
吳信緻(2018)。以系統性回顧暨內容分析我國近代適應體育之發展趨勢:自1996年至2016年為例。﹝碩士論文。國立臺灣師範大學﹞臺灣博碩士論文知識加值系統。 https://hdl.handle.net/11296/u7mfna。
吳清山(2014)。專題導向學習。教育研究月刊,(241),157-158。https://doi.org/10.3966/168063602014050241010
李承育(2022)。探討教材設計與性別對於大學生機器人程式設計課程之影響。﹝碩士論文。國立嘉義大學﹞臺灣博碩士論文知識加值系統。 https://hdl.handle.net/11296/vegwk9。
林佳蓁(2021)。校長領導風格對學校組織健康影響之後設分析研究。﹝博士論文。國立政治大學﹞臺灣博碩士論文知識加值系統。 https://hdl.handle.net/11296/4f2qcn。
林奕妏(2017)。小學高年級學生專題導向STEM學習成效之探討。﹝碩士論文。國立成功大學﹞臺灣博碩士論文知識加值系統。 https://hdl.handle.net/11296/6vhuy3。
林慧欣(2019)。健康醫療照護領域專業人員與學生之精神疾病去污名介入成效:系統性回顧與網絡統合分析。﹝碩士論文。國立臺灣師範大學﹞臺灣博碩士論文知識加值系統。 https://hdl.handle.net/11296/y7wrwd。
徐靜嫻(2013)。PBL融入師資培育教學實習課程之個案研究。教育科學研究期刊,58(2),91-121。https://www.airitilibrary.com/Publication/alDetailedMesh?DocID=2073753X-201306-201307250001-201307250001-91-121
馬紅芹(2015)。美國 STEM 教育的發展歷程研究。教育研究與評論(技術教育版),2,5-9。
張攸萍(2019)。幼兒園園長領導相關研究之後設分析-整合文獻計量方法之應用。﹝博士論文。國立政治大學﹞臺灣博碩士論文知識加值系統。 https://hdl.handle.net/11296/2djg78。
張雨勝(2016)。問題導向的STEM課程對高一學生問題解決能力影響之行動研究。﹝碩士論文。國立彰化師範大學﹞臺灣博碩士論文知識加值系統。 https://hdl.handle.net/11296/8py229。
教育部(2014)。十二年國民基本教育課程綱要總綱(教育部發布版)。 取自 https://www.naer.edu.tw/bin/home.php。
陳志銘(2012)。問題導向學習(problem-based learning)。圖書館學與資訊科學大辭典。取自 http://terms.naer.edu.tw/detail/1678753/。
陳沛蓉(2019)。在職特教教師實證本位教學之教師訓練系統性文獻分析。﹝碩士論文。國立臺灣師範大學﹞臺灣博碩士論文知識加值系統。 https://hdl.handle.net/11296/ng39v6。
陳淑芬(2013)。社交技巧教學對增進臺灣泛自閉症障礙學生社會能力成效之後設分析。特殊教育與復健學報,29,47-71。
陳毓凱、洪振方(2007)。兩種探究取向教學模式之分析與比較。科學教育月刊,(305),4-19。https://doi.org/10.6216/SEM.200712_(305).0003
陳榮慶(2014)。資訊科技工具應用於中小學物理科教學之系統性文獻分析。﹝碩士論文。國立臺灣師範大學﹞臺灣博碩士論文知識加值系統。 https://hdl.handle.net/11296/m6x935。
游旻寯(2019)。探討差異化專題導向於STEM實作課程對學習成效之影響。﹝碩士論文。國立臺灣師範大學﹞臺灣博碩士論文知識加值系統。 https://hdl.handle.net/11296/54pzgb。
湯維玲(2019)。探究美國STEM與STEAM教育的發展。課程與教學,22(2),49-77。https://doi.org/10.6384/CIQ.201904_22(2).0003
黃怡婷(2021)。以 STEAM 建構幼兒創意數學遊戲之個案研究。﹝碩士論文。國立臺中教育大學﹞臺灣博碩士論文知識加值系統。 https://hdl.handle.net/11296/7uvyzk。
黃郁雯(2014)。資訊科技融入中小學數學科教學之系統性文獻分析:2000年至2012年。﹝碩士論文。國立臺灣師範大學﹞臺灣博碩士論文知識加值系統。 https://hdl.handle.net/11296/a2a58v。
黃瀚毅(2022)。我國資訊科技融入代數與幾何單元教學之系統性文獻分析:2007年至2021年。﹝碩士論文。國立清華大學﹞臺灣博碩士論文知識加值系統。 https://hdl.handle.net/11296/pqtvh9。
楊坤原、張賴妙理(2005)。問題本位學習的理論基礎與教學歷程。中原學報,33(2),215-235。https://doi.org/10.6358/JCYU.200506.0215
賓靜蓀(2017)。5大精神,培養STEAM新素養。取自https://udn.com/news/story/7026/2442230
趙慧臣、陸曉婷(2016)。開展STEAM教育提高學生創新能力──訪談美國STEAM教育知名學者格雷特‧亞克門教授。開放教育月刊,22(5),5-6。
趙麗玲、郭重吉、溫育德、林宗岐、王瑋龍(2015)。教師在職進修動機與障礙因素之探討。自然科學與教育,1(1),p.1~22。
歐陽儀(2022)。以系統性文獻回顧法探討運動政策研究發展趨勢 (2000-2020)。﹝碩士論文。國立臺中教育大學﹞臺灣博碩士論文知識加值系統。 https://hdl.handle.net/11296/46487x。
蕭君穎(2023)。機器人作為國小運算思維教學工具之系統性文獻回顧。﹝碩士論文。國立臺灣師範大學﹞臺灣博碩士論文知識加值系統。 https://hdl.handle.net/11296/cruxb8。
謝進昌 (2010) 。國內教育學門系統性文獻評閱策略及後設分析發展現況與建議。教育研究學報,133-156。
謝傳崇、許欉龍(2015)。國民中小學校長領導研究之後設分析-以博士論文為例。教育研究學報,49(2),41-64。
羅梓洋(2016)。PBL科學活動對國中生自然科學習興趣與問題解決能力的影響。﹝碩士論文。國立彰化師範大學﹞臺灣博碩士論文知識加值系統。 https://hdl.handle.net/11296/q4c2sd。
羅盛昱(2021)。電腦輔助教學系統改善學習障礙學生學習效益之系統性文獻分析。﹝碩士論文。國立清華大學﹞臺灣博碩士論文知識加值系統。 https://hdl.handle.net/11296/zxj564。
鐘柏昌, & 張麗芳. (2014). 美國 STEM 教育變革中 “變革方程” 的作用及其啟示. 中國電化教育, (4), 18-24.
二、 外文部分
Asbury, C., & Rich, B. (2008). The Dana consortium report on arts and cognition: Learning, arts, and the brain. New York: Dana.(im Internet verfügbar, Aufruf 2011).
Barrows, H. S. (1986). A taxonomy of problem‐based learning methods. Medical education, 20(6), 481-486. https://doi.org/10.1111/j.1365-2923.1986.tb01386.x
Barrows, H. S., & Tamblyn, R. M. (1980). Problem-based learning: An approach to medical education (Vol. 1). Springer Publishing Company.
Barry, N. B. (2014). The ITEEA 6E learning by DeSIGN model. Technology and Engineering Teacher, 73(6), 14-19.
Benjamin, E. M., Schneider, M. S., & Hinchey, K. T. (1999). Implementing practice guidelines for diabetes care using problem-based learning. A prospective controlled trial using firm systems. Diabetes care, 22(10), 1672-1678.
Berryman, S.(1991).Solutions.Washington, DC:National Council on Vocational Education.
Bransford, J. D., Brown, A. L., & Cocking, R. R. (2000). How people learn (Vol. 11). Washington, DC: National academy press.
Branson, R. K. (1978). The interservice procedures for instructional systems development. Educational technology, 18(3), 11-14.
Bybee, R. (1993). An instructional model for science education: Developing biological literacy. Colorado Springs, CO: Biological Sciences Curriculum Studies.
Bybee, R. W. (2013). The case for STEM education: Challenges and opportunities.
Bybee, R. W.,Landes, N. M.(1988).The biological science curriculum study (BSCS).Science and Children,25(8),36-37.
Cooper, H. M. (1982). Scientific guidelines for conducting integrative research reviews. Review of Educational Research, 52, 291-302.
Cooper, H., & Hedge, L. V. (1994). The handbook of research synthesis (Eds.). New York: Russell Sage Foundation.
Council, D. P. (2006). American competitiveness initiative. Office of Science and Technology Policy. Retrieved April, 16, 2007.
Davies, P. (1999). What is evidence‐based education?. British journal of educational studies, 47(2), 108-121.
Delisle, R. (1997). How to use problem-based learning in the classroom. Ascd.
Dewey, J. (1958). Experience and nature (Vol. 471). Courier Corporation.
Dow, W. (2006). The need to change pedagogies in science and technology subjects: A European perspective. International Journal of Technology and Design Education, 16, 307-321.
Edens, K. M. (2000). Preparing problem solvers for the 21st century through problem-based learning. College Teaching, 48(2), 55-60.
Evans, J., & Benefield, P. (2001). Systematic reviews of educational research: does the medical model fit?. British educational research journal, 27(5), 527-541.
Feldman, K. A. (1971). Using the work of others: Some observations on reviewing and integrating. Sociology of Education, 86-102.
Gough, D. (2004). Systematic research synthesis. Evidence-based practice in education, 44-62.
Guay, F., Ratelle, C. F., & Chanal, J. (2008). Optimal learning in optimal contexts: The role of self-determination in education. Canadian psychology/Psychologie canadienne, 49(3), 233.
Hargreaves, D. H. (1996). Teaching as a research-based profession: possibilities and prospects. Teacher training agency annual lecture.
Herschbach, D. R. (2011). The STEM initiative: Constraints and challenges. Journal of stem teacher education, 48(1), 96-122. https:// doi.org/10.30707/JSTE48.1Herschbach
Hodell, C. (2007). Basics of instructional systems development (Vol. 9706). American Society for Training and Development.
Hofstein, A., & Lunetta, V. N. (1982). The role of the laboratory in science teaching: Neglected aspects of research. Review of educational research, 52(2), 201-217.
Howard S. Barrows. (1985). How to design a problem-based curriculum for the preclinical years (Vol. 8). Springer Publishing Company.
Institute of Medicine, National Academy of Engineering, National Academy of Sciences, Committee on Science, Engineering, and Public Policy, & Committee on Prospering in the Global Economy of the 21st Century: An Agenda for American Science and Technology. (2007). Rising above the gathering storm: Energizing and employing America for a brighter economic future. Washington, DC: National Academies Press.
Jackson, G. B. (1980). Methods for integrative reviews. Review of Educational Research, 50, 438-460.
Karplus, R., & Thier, H. D. (1967). A NEW LOOK AT ELEMENTARY SCHOOL SCIENCE, NEW TRENDS IN CURRICULUM AND INSTRUCTION SERIES.
Krajcik, J. S., & Blumenfeld, P. C. (2006). Project-based learning (pp. 317-34). na.
Larmer, J. (2014). Project-based learning vs. problem-based learning vs. X-BL. Retrieved March, 8, 2024.
Lawson, A. E., Abraham, M. R., & Renner, J. W. (1989). A theory of instruction: Using the learning cycle to teach science concepts and thinking skills. National Association for Research in Science Teaching.
Maeda, J. (2013). Stem+ art= steam. The STEAM journal, 1(1), 34. https://doi.org/10.5642/steam.201301.34
Merrill, C. (2001). Integrated technology, mathematics, and science education: A quasi-experiment.
National Science Board (US). (2007). A national action plan for addressing the critical needs of the US science, technology, engineering, and mathematics education system. National Science Foundation.
National Science Board (US). Task Committee on Undergraduate Science, & Engineering Education. (1987). Undergraduate Science, Mathematics and Engineering Education: Source materials (Vol. 2). National Science Board, Task Committee on Undergraduate Science and Engineering Education.
National Science Foundation (US). Directorate for Education, & Human Resources. (1996). Shaping the future: New expectations for undergraduate education in science, mathematics, engineering, and technology (Vol. 1). National Science Foundation, Division of Undergraduate Education.
Obama Whitehouse. (2010a). Educate to innovate. https://obamawhitehouse.archives.gov/issues/education/k-12/educate-innovate
Obama Whitehouse. (2010b). Changing the equation in STEM education. https://obamawhitehouse.archives.gov/blog/2010/09/16/changingequation-stem-education
OECD (2019). PISA 2018 Assessment and Analytical Framework. OECD Publishing. https://doi.org/10.1787/b25efab8-en
Office of Science and Technology Policy. (2013). Federal science, technology, engineering, and mathematics (STEM) education 5 – year strategic plan. https://obamawhitehouse.archives.gov/sites/default/files/microsites/ostp/stem_stratplan_2013.pdf
Office of Science and Technology Policy. (2018a). America will win the global competition for STEM talent. https://www.whitehouse.gov/articles/america-will-win-global-competition-stem-talent/
Office of Science and Technology Policy. (2018a). America will win the global competition for STEM talent. https://www.whitehouse.gov/articles/america-will-win-global-competition-stem-talent/
Office of Science and Technology Policy. (2018b). Charting a course for success:America’s strategy for STEM education: A report by the Committee on STEM education of the national science & technology council. https://www.whitehouse.gov/wp-content/uploads/2018/12/STEM-Education-Strategic-Plan-2018.pdf
Office of Science and Technology Policy. (2018b). Charting a course for success:America’s strategy for STEM education: A report by the Committee on STEM education of the national science & technology council. https://www.whitehouse.gov/wp-content/uploads/2018/12/STEM-Education-Strategic-Plan-2018.pdf
Ragan, T. J., & Smith, P. L. (1999). Instructional design. New York: Macmillan Publishing Company.
Savery, J. R. (2015). Overview of problem-based learning: Definitions and distinctions. Essential readings in problem-based learning: Exploring and extending the legacy of Howard S. Barrows, 9(2), 5-15.
Silverman, S., & Skonie, R. (1997). Research on Teaching in Physical ducation: An Analysis of Published Research. Journal of teaching in physical education, 16(3), 300-11.
The White House. (2006). President Bush’s technology agenda. https://georgewbush-whitehouse.archives.gov/infocus/technology/tech2.html
The White House. (2009). President Obama launches “educate to innovate” campaign for excellence in science, technology, engineering & math (STEM) education. https://obamawhitehouse.archives.gov/the-press-office/president-obama-launches-educate-innovate-campaign-excellence-science-technology-en
The White House. (2012). President Obama announces new plan to create STEM master teaching corps. https://obamawhitehouse.archives.gov/blog/2012/07/18/president-obama-announces-new-plan-create-stem-master-teaching-corps
The White House. (2022).FACT SHEET: Biden-Harris Administration Actions to Attract STEM Talent and Strengthen our Economy and Competitiveness. https://www.whitehouse.gov/briefing-room/statements-releases/2022/01/21/fact-sheet-biden-harris-administration-actions-to-attract-stem-talent-and-strengthen-our-economy-and-competitiveness/
Thomas, J. W. (2010). A review of research on project-based learning. 2000. The Autodesk Foundation: San Rafael.
Tranfield, D., Denyer, D., & Smart, P. (2003). Towards a methodology for developing evidence‐informed management knowledge by means of systematic review. British journal of management, 14(3), 207-222.
U.S. Department of Education. (2002a). No Child Left Behind: A desktop reference. Washington, DC: Author.
U.S. Department of Education. (2002b). Strategic Plan, 2002-2007. Washington, DC: Author.
Wallden, S., & Mäkinen, E. (2014). Educational Data Mining and Problem-Based Learning. Informatics in Education, 13(1), 141-156.
Wang, T. H., Lim, K. Y., Lavonen, J., & Clark-Wilson, A. (2019). Maker-centred science and mathematics education: lenses, scales and contexts. International Journal of Science and Mathematics Education, 17, 1-11.
Whitehouse Articles. (2017). President Trump signs memorandum for STEM education funding. https://www.whitehouse.gov/articles/president-trump-signs-memorandum-stem-education-funding
Whitehouse Articles. (2018). Ryan Johnston, Trump stands by STEM education spending in fiscal 2019 budget. https://edscoop.com/trumpstands-by-stem-education-spending-in-fy19-budget
Wolk, S. (1994). Project-based learning: Pursuits with a purpose. Educational Leadership, 52(3), 42-45.
Yakman, G. (2008). STEAM education: An overview of creating a model of integrative education. In Pupils Attitudes toward Technology (PATT-19) Conference: Research on Technology, Innovation, Design & Engineering Teaching, Salt LakeCity, Utah.
Yakman, G. (2010). What is the point of STE@ M?–A Brief Overview. Steam: A Framework for Teaching Across the Disciplines. STEAM Education, 7(9), 1-9.
Yakman, G. (2016). Developing STEAM Education to Improve Students’ Innovative Ability. https://steamedu. com/developing-steam-education-toimprove-students-innovative-ability/(дата звернення: 23.07. 2020).