簡易檢索 / 詳目顯示

研究生: 簡佑文
Chien, Yu-Wen
論文名稱: Host-pathogen interaction networks between Candida albicans and zebrafish: the dynamics of iron and glucose
白色念珠菌和斑馬魚之間鐵和葡萄糖的動態調控網路
指導教授: 林澤
Lin, Che
口試委員: 林澤
Lin, Che
莊永仁
李曉青
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 通訊工程研究所
Communications Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 39
中文關鍵詞: 動態網路白色念珠菌葡萄糖斑馬魚
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 白色念珠菌(Candida albicans)是人體中一種共生的菌類 ,會造成口腔或生殖器官的感染 ,在正常的人體內沒有致病力 ,但是在免疫不全的病患有很高的致死率。因此 ,了解白色念珠菌的致病以及他們和宿主之間的關係非常重要。然而目前為止 ,不同的階段宿主和病原之間的調控網路還不是很清楚。
    在這研究中 ,我們建立了白色念珠菌和斑馬魚(zebrafish)之間的動態宿主-病原調控網路(host-pathogen interaction network) ,結合時間序列微陣列(time-series microarray data) ,可以建立三個不同感染階段的調控網路:附著階段(adhesion stage) ,入侵階段(invasion stage) ,破壞階段(damage stage)。由於鐵對於宿主和病原都是不可或缺的 ,在感染過程中他們之間會有競爭鐵的現象 ,因此我們建立了與鐵作用相關的調控網路。此外 ,我們也建立了和葡萄糖相關的調控網路 ,因為葡糖糖已經被確認是和病原的菌絲形成有關 ,而菌絲又有利於病原入侵宿主。根據鐵和葡萄糖作用相關的調控網路 ,我們可以確認在不同的階段哪些基因是有很多連結的節點(hub) ,或是在不同的階段哪些節點的變化是很大的。
    根據建立的白色念珠菌和斑馬魚之間的動態調控網路 ,我們可以了解在不同的三個階段關於鐵的競爭和葡萄醣代謝是如何的表現。有趣的是 ,在附著階段 ,和鐵相關的白色念珠菌基因和斑馬魚蛋白質表現非常活躍 ,到了入侵階段 ,換成和葡萄糖相關的白色念珠菌基因和斑馬魚蛋白質表現比較活躍 ,而最後的破壞階段 ,又換成和鐵相關的白色念珠菌基因和斑馬魚蛋白質表現活躍了。


    Candida albicans is a commensal diploid fungus that could cause opportunistic oral and genital infections in humans. Though benign for immunocompetent humans, systemic fungal infections of C. albicans have become major causes of morbidity and mortality in immunocompromised patients. As a result, the understanding of the dynamics of C. albicans pathogenesis and its interaction with the host has emerged as an important topic of study. However, relatively little is known about the host-pathogen interaction networks and the corresponding evolution of the networks
    across different stages of infection.
    In this study, we were able to construct the host-pathogen interaction networks between C. albicans and zebrafish for three different infection stages, i.e., the adhesion, the invasion, and the damage stage. Iron is an essential element for both pathogen and host, and intense competition for this precious metal between host and pathogen often occurs during infection. In addition, glucose has been identified as an important resource during hyphae formation, which is highly related to the invasion of pathogen during infection. So we focused on the construction of the interaction networks associated with iron and glucose. From the two resulting interaction networks, we identified highly connected hub genes that are relevant to iron competition or glucose metabolism during infection; distinguished pertinent genes whose connectivity change significantly from stage to stage; and studied the behaviors of these genes that are differentially regulated during different infection
    stages.
    The constructed host-pathogen interaction networks for three infection stages provide significant insights into the dynamic regulation for iron competition and glucose metabolism during infection. In fact, based on these interaction networks, we were able to predict the progress of iron competition and glucose metabolism activities throughout the adhesion, invasion, and damage stage. Interestingly, it seems that both C. albicans and zebrafish are more actively involved in the regulation of iron-related genes and proteins during the adhesion stage. During the invasion stage, however, both host and pathogen turn on the regulation of glucose-related genes and proteins. In the last stage of damage, regulatory activities of host and pathogen focus back on iron-related genes and proteins.

    Abstract i Contents iii 1 Introduction 1 2 Materials and Methods 4 2.1 Dataset selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.2 Gene and protein pools selection and gene pool expansion . . . . . . . . . . . . . 7 2.3 Construction of the host-pathogen interaction networks . . . . . . . . . . . . . . . 12 3 Results and Discussion 16 3.1 Construction of the host-pathogen interaction networks . . . . . . . . . . . . . . . 16 3.2 Inspection of the host-pathogen interaction networks . . . . . . . . . . . . . . . . 18 3.3 Functional investigation of the hub genes/proteins in the host-pathogen interaction networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.4 Exploration of the C. albicans iron acquisition systems . . . . . . . . . . . . . . . 22 4 Conclusion 25 5 Appendix 27

    [1] Odds FC: Candida and Candidosis. London: W.B. Saunders Company, 2nd edition 1988.
    [2] Mavor AL, Thewes S, Hube B: Systemic fungal infections caused by Candida species: epidemiology, infection process and virulence attributes. Curr Drug Targets 2005, 6(8):863–874.
    [3] Fidel PL, Jr: Immunity to candida. Oral Dis 2002, 8 Suppl 2:69–75.
    [4] Pfaller MA, Diekema DJ: Epidemiology of invasive candidiasis: a persistent public health problem. Clin Microbiol Rev 2007, 20(1):133–163.
    [5] Lo HJ, Kohler JR, Didomenico B, Loebenberg D, Cacciapuoti A, Fink GR: Nonfilamentous C. albicans mutants are avirulent. Cell 1997, 90(5):939–949.
    [6] Kobayashi SD, Cutler JE: Candida albicans hyphal formation and virulence: is there a clearly defined role? Trends Microbiol 1998, 6(3):92–94.
    [7] Calderone RA, Fonzi WA: Virulence factors of Candida albicans. Trends Microbiol 2001, 9(7):327–335.
    [8] Cutler JE: Putative virulence factors of Candida albicans. Annu Rev Microbiol 1991, 45:187–218.
    [9] Hube B: From commensal to pathogen: stage- and tissue-specific gene expression of Candida albicans. Curr Opin Microbiol 2004, 7(4):336–341.
    [10] Leberer E, Ziegelbauer K, Schmidt A, Harcus D, Dignard D, Ash J, Johnson L, Thomas DY: Virulence and hyphal formation of Candida albicans require the Ste20p-like protein kinase CaCla4p. Curr Biol 1997, 7(8):539–546.
    [11] Hudson DA, Sascia OL, Sanders RJ, Norris GE, Edwards PJB, Sullivan PA, Farley PC: Identification of the dialysable serum inducer of germ-tube formation in Candida albicans. Microbiol-Sgm 2004, 150:3041–3049.
    [12] Vidotto V, Accattatis G, Zhang Q, Campanini G, Aoki S: Glucose influence on germ tube production in Candida albicans. Mycopathologia 1996, 133(3):143–147.
    [13] Brock M: Fungal metabolism in host niches. Curr Opin Microbiol 2009, 12(4):371–376.
    [14] Welch KD, Van Eden ME, Aust SD: Modification of ferritin during iron loading. Free Radic Biol Med 2001, 31:999–1006.
    [15] Schaible UE, Kaufmann SH: Iron and microbial infection. Nat Rev Microbiol 2004, 2:946–953.
    [16] Weinberg ED: Iron availability and infection. Biochim Biophys Acta 2009, 1790:600–605.
    [17] Wang L, Cherayil BJ: Ironing Out the Wrinkles in Host Defense:Interactions between iron homeostasis and innate immunity. J. Innate Immunity 2009, 1:455–464.
    [18] Sutak R, Lesuisse E, Tachezy J, Richardson DR: Crusade for iron: iron uptake in unicellular eukaryotes and its significance for virulence. Trends Microbiol 2008, 16:261–268.
    [19] Almeida RS, Wilson D, Hube B: Candida albicans iron acquisition within the host. FEMS Yeast Res 2009, 9:1000–1012.
    [20] Meeker ND, Trede NS: immunology and zebrafish: spawning new models of human disease. Dev Comp Immunol 2008, 32:745–747.
    [21] Sullivan C, Kim CH: Zebrafish as a model for infectious disease and immune function. Fish Shellfish Immunol 2008, 25(4):341–350.
    [22] Zon LL, Peterson RT: In vivo drug dicovery in the zebrafish. Nat. Rev. Drug Discov 2005, 4:35–44.
    [23] Chao CC, Hsu PC, Jen CF, Chen IH,Wang CH, Chan HC, Tsai PW, Tung KC,Wang CH, Lan CY: Zebrafish as a Model Host for Candida albicans infection. Infection and Immunity 2010, 78(6):2512–2521.
    [24] Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, et al: Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 2000, 25:25–29.
    [25] Teixeira MC, Monteiro P, Jain P, Tenreiro S, Fernandes AR, Mira NP, AlenquerM, Freitas AT, Oliveira AL, Sa-Correia I: The YEASTRACT database: a tool for the analysis of transcription regulatory associations in Saccharomyces cerevisiae. Nucleic Acids Res 2006, 34:D446–451.
    [26] Wang YC, Lan CY, Hsieh WP, Murillo LA, Agabian N, Chen BS: Global screening of potential Candida albicans biofilm-related transcription factors via network comparison. BMC Bioinformatics 2010, 11:53.
    [27] Berglund AC, Sjolund E, Ostlund G, Sonnhammer EL: InParanoid 6: eukaryotic ortholog clusters with inparalogs. Nucleic Acids Res 2008, 36:D263–266.
    [28] Wang YC, Chen BS: Integrated cellular network of transcription regulations and
    protein-protein interactions. BMC Syst Biol 2010, 4:20.
    [29] Wu WS, Li WH, Chen BS: Identifying regulatory targets of cell cycle transcription factors using gene expression and ChIP-chip data. BMC Bioinformatics 2007, 8:188.
    [30] Alon U: An introduction to systems biology: design principles of biological circuits. Boca Raton, FL: Chapman and Hall/CRC 2007.
    [31] Coleman TF, Hulbert LA: A Direct Active Set Algorithm for Large Sparse Quadratic Programs with Simple Bounds. Math Program 1989, 45(3):373–406.
    [32] Gill PE, MurrayW, Wright MH: Practical optimization. London; New York: Academic Press 1981.
    [33] Akaike H: A New Look at the Statistical Model Identification. IEEE Trans. Autom. Contr. 1974, 19:716–723.
    [34] Johansson R: System modeling and identification. Englewood Cliffs, NJ: Prentice Hall 1993.
    [35] Knight S, Lesuisse E, Stearman R, Klausner RD, Dancis A: Reductive iron uptake by Candida albicans: role of copper, iron and the TUP1 regulator. Microbiology 2002, 148:29–40.
    [36] Bensen ES, Martin SJ, Li M, Berman J, Davis DA: Transcriptional profiling in Candida albicans reveals new adaptive responses to extracellular pH and functions for Rim101p. Mol Microbiol 2004, 54:1335–1351.
    [37] Thewes S, Kretschmar M, Park H, Schaller M, Filler SG, B H: In vivo and ex vivo comparative transcriptional profiling of invasive and non-invasive Candida albicans isolates identifies genes associated with tissue invasion. Mol Microbiol 2007, 63:1606–1628.
    [38] Fraenkel PG, Traver D, Donovan A, Zahrieh D, Zon LI: Ferroportin 1 is required for normal iron cycling in zebrafish. J Clin Invest 2005, 115:1532–41.
    [39] Donovan A, Brownlie A, Dorschner MO, et al: The zebrafish mutant gene chardonnay (cdy) encodes divalent metal transporter 1 (DMT1). Blood. 2002, 100:4655–4659.
    [40] Ransom DG, Haffter P, Odenthal J, Brownlie A, Vogelsang E, Kelsh RN, Brand M, van Eeden FJM, Furutani-Seiki M, Granato M, Hammerschmidt M, Heisenberg CP, Jiang YJ, Kane DA, Mullins MC, Nぴusslein-Volhard C: Characterization of zebrafish mutants with defects in embryonic hematopoiesis. Development 1996, 123:311–319.
    [41] Sung JJ, Jeon J, Lee JJ, Kim CG: Zebrafish Jak2a plays a crucial role in definitive hematopoiesis and blood vessel formation. Biochem Biophys Res Commun 2008, 378:629–633.
    [42] Uhl MA, Biery M, Craig N, Johnson AD: Haploinsufficiency-based large-scale forward genetic analysis of filamentous growth in the diploid human fungal pathogen C. albicans. EMBO J. 2003, 22:2668–2678.
    [43] Zaragoza O, Blazquez MA, Gancedo C: Disruption of the Candida albicans TPS1 gene encoding trehalose-6-phosphate synthase impairs formation of hyphae and decreases infectivity. J. Bacteriol. 1998, 180:3809–3815.
    [44] Bassilana M, Blyth J, Arkowitz RA: Cdc24, the GDP-GTP exchange factor for Cdc42, is required for invasive hyphal growth of Candida albicans. Eukaryot Cell 2003, 2:9–18.
    [45] Fan J, Chaturvedi V, Shen SH: Identification and phylogenetic analysis of a glucose transporter gene family from the human pathogenic yeast Candida albicans. J Mol Evol 2002, 55:336–346.
    [46] Hsieh YC, Chang MS, Chen JY, et al: Cloning of zebrafish BAD, a BH3-only proapoptotic protein, whose overexpression leads to apoptosis in COS-1 cells and zebrafish embryos. Biochem Biophys Res Commun 2003, 304:667–675.
    [47] Heymann P, Gerads M, Schaller M, Dromer F, Winkelmann G, JF E: The siderophore iron transporter of Candida albicans (Sit1p/Arn1p) mediates uptake of ferrichrome-type siderophores and is required for epithelial invasion. Infect Immun 2002, 70:5246–5255.
    [48] Hu CJ, Bai C, Zheng XD, Wang YM, Wang Y: Characterization and functional analysis of the siderophore- iron transporter CaArn1p in Candida albicans. J Biol Chem 2002, 277:30598–30605.
    [49] Pendrak ML, Chao MP, Yan SS, Roberts DD: Heme oxygenase in Candida albicans is regulated by hemoglobin and is necessary for metabolism of exogenous heme and hemoglobin to alpha-biliverdin. J Biol Chem 2004, 279:3426–3433.
    [50] Santos R, Buisson N, Knight S, Dancis A, Camadro JM, Lesuisse E: Haemin uptake and use as an iron source by Candida albicans: role of CaHMX1-encoded haem oxygenase. Microbiology 2003, 149:579–588.
    [51] Knight SA, Dancis A: Reduction of 2,3-bis(2-methoxy- 4-nitro-5-sulfophenyl)-2Htetrazolium- 5-carboxanilide inner salt (XTT) is dependent on CaFRE10 ferric reductase for Candida albicans grown in unbuffered media. Microbiology 2006, 152:2301–2308.
    [52] Ramanan N, Wang Y: A high-affinity iron permease essential for Candida albicans virulence. Science 2000, 288:1062–1064.
    [53] Knight SA, Vilaire G, Lesuisse E, Dancis A: Iron acquisition from transferrin by Candida albicans depends on the reductive pathway. Infect Immun 2005, 73:5482–5492.
    [54] Almeida RS, Brunke S, Albrecht A, Thewes S, Laue M, Edwards JE, Filler SG, Hube B: The hyphal-associated adhesin and invasin Als3 of Candida albicans mediates iron acquisition from host ferritin. PLoS Pathog 2008, 4:e1000217.
    [55] Liu Y, Filler SG: Candida albicans Als3, a Multifunctional adhesion and invasin. Eukaryotic Cell 2011, 10:168–173.
    [56] Weissman Z, Shemer R, Kornitzer D: Deletion of the copper transporter CaCCC2 reveals two distinct pathways for iron acquisition in Candida albicans. Mol Microbiol 2002, 44:1551–1560.
    [57] Weissman Z, Kornitzer D: A family of Candida cell surface haem-binding proteins involved in haemin and haemoglobin-iron utilization. Mol Microbiol 2004, 53:1209–1220.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE