研究生: |
鄭巧韓 Cheng, Chiao-Han |
---|---|
論文名稱: |
Pb-Sn-Bi-Se-S 多元熱電合金材料之製程與特性分析 Synthesis and Characterization of Lead–Tin–Bismuth–Selenium–Sulfur Multi-element Thermoelectric Materials |
指導教授: |
廖建能
Liao, Chien-Neng |
口試委員: |
吳欣潔
Wu, Hsin-Jay 朱旭山 Chu, Hsu-Shen |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2023 |
畢業學年度: | 112 |
語文別: | 中文 |
論文頁數: | 64 |
中文關鍵詞: | 熱電材料 、熱壓燒結 、硫化鉛 、硒化鉛 、晶格扭曲 |
外文關鍵詞: | Multi-element alloying, Low thermal conductivity |
相關次數: | 點閱:26 下載:4 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
硫族化鉛(Lead Chalcogenide)為中高溫區段常見之熱電材料,其中硫化鉛又以低成本、高蘊含量而具新興取代碲化鉛之發展潛力。然而,硫化鉛受限於高熱導、低載子濃度的特性而在熱電表現上不甚理想。因此,本研究欲以多元合金效應與合金摻雜效應分別針對高熱導、低導電進行優化與探討。利用硒硫合金在室溫下的高互溶度形成無析出相之均勻固溶體,同時藉由晶格扭曲效應降低熱導率;另外藉由錫、鉍元素的摻雜進行能帶結構修正及載子濃度調升,用以改善導電率。實驗第一部分中,我們將硒硫化鉛針對不同的錫摻雜比例與熱壓製程參數進行嘗試,最終選定Pb0.45Sn0.05Se0.25S0.25作為標準比例與熱壓溫度550°C以達到最佳燒結緻密度來製作試片。第二部份則是探討錫元素在材料系統中的影響,內部結構對於陰、陽離子空位缺陷的平衡使其在極微量摻雜區間(Sn=1%)於室溫提升導電率,而後隨溫度增加與Pb0.45Sn0.05Se0.25S0.25無異。第三部份我們添加Bi元素提升其載子濃度,與Pb0.45Sn0.05Se0.25S0.25試片相比,室溫載子濃度從1.83·10^18 cm^(-3)增加到5.43·10^19 cm^(-3),導電率由133.2 S∙m^(-1)上升至1289.6 S∙m^(-1)。因此最終熱電優值在573K下從純硫化鉛的0.165上升至0.430,數值有顯著的提升。
Lead Sulfide (PbS) has great potential as a substitute for lead telluride (PbTe) owing to its low-cost and earth-abundant features. However, high thermal conductivity and low carrier concentration of PbS causing relatively low thermoelectric performance compared with PbTe which limits its further application. This study aims to optimize and investigate the high thermal conductivity and low electrical conductivity separately through the effects of multi-element alloying and doping. We utilized the high mutual solubility of selenium and sulfur alloys to form a homogeneous solid solution without precipitation phase while introduced the lattice distortion effect to reduce thermal conductivity. Furthermore, the introduction of tin and bismuth elements was used to modify the band structure and enhance carrier concentration, thereby improving electrical conductivity. We have optimized the condition of sintering parameter to achieve great densification. Next, we explored the influence of tin elements in the material system. The equilibrium of anion and cation vacancy defects within a very low doping range (~1%) at room temperature contributed to an enhancement of the electrical conductivity, which converged with the standard sample (5%) as the temperature increased. Finally, we introduced bismuth to increase the carrier concentration. the room temperature carrier concentration was found to increase from 1.83∙10^18 cm^(-3) to 5.43∙10^19 cm^(-3), and the electrical conductivity raised from 133.2 S∙m^(-1) to 1289.6 S∙m^(-1). Consequently, the thermoelectric figure of merit increased significantly from 0.165 for pure PbS to 0.430 at 573 K, leading to a substantial enhancement in the thermoelectric performance.
1. IRENA, World Energy Transitions Outlook 2022: 1.5°C Pathway. International Renewable Energy Agency, Abu Dhabi, (2022).
2. G. J. Snyder, E. S. Toberer, Complex thermoelectric materials. Nature materials 7, 105-114 (2008).
3. R. Dalven, A review of the semiconductor properties of PbTe, PbSe, PbS and PbO. Infrared physics 9, 141-184 (1969).
4. Y. Xiao, W. Liu, Y. Zhang, D. Wang, H. Shi, S. Wang, Y. Jin, W. Qu, H. Wu, X. Ding, Rationally optimized carrier effective mass and carrier density leads to high average ZT value in n-type PbSe. Journal of Materials Chemistry A 9, 23011-23018 (2021).
5. Y. Xiao, D. Wang, Y. Zhang, C. Chen, S. Zhang, K. Wang, G. Wang, S. J. Pennycook, G. J. Snyder, H. Wu, Band sharpening and band alignment enable high quality factor to enhance thermoelectric performance in n-type PbS. Journal of the American Chemical Society 142, 4051-4060 (2020).
6. Y. Lee, S.-H. Lo, C. Chen, H. Sun, D.-Y. Chung, T. C. Chasapis, C. Uher, V. P. Dravid, M. G. Kanatzidis, Contrasting role of antimony and bismuth dopants on the thermoelectric performance of lead selenide. Nature communications 5, 3640 (2014).
7. Y. Li, Z. Wu, J. Lin, Y. Wang, J. Mao, H. Xie, Z. Li, Enhanced thermoelectric performance of hot-press Bi-doped n-type polycrystalline PbS. Materials Science in Semiconductor Processing 121, 105393 (2021).
8. C. Zhu, J. Zhang, H. Ming, L. Huang, Y. Li, T. Chen, D. Li, B. Zhang, J. Xu, X. Qin, Synergistic optimization of electrical and thermal transport in n-type Bi-doped PbTe by introducing coherent nanophase Cu1.75Te. Journal of Materiomics 7, 146-155 (2021).
9. K. Uchida, M. Ishida, T. Kikkawa, A. Kirihara, T. Murakami, E. Saitoh, Longitudinal spin Seebeck effect: from fundamentals to applications. Journal of Physics: Condensed Matter 26, 343202 (2014).
10. Y. Pei, J. Lensch‐Falk, E. S. Toberer, D. L. Medlin, G. J. Snyder, High thermoelectric performance in PbTe due to large nanoscale Ag2Te precipitates and La doping. Advanced Functional Materials 21, 241-249 (2011).
11. S. Johnsen, J. He, J. Androulakis, V. P. Dravid, I. Todorov, D. Y. Chung, M. G. Kanatzidis, Nanostructures boost the thermoelectric performance of PbS. Journal of the American Chemical Society 133, 3460-3470 (2011).
12. L.-D. Zhao, J. He, C.-I. Wu, T. P. Hogan, X. Zhou, C. Uher, V. P. Dravid, M. G. Kanatzidis, Thermoelectrics with earth abundant elements: high performance p-type PbS nanostructured with SrS and CaS. Journal of the American Chemical Society 134, 7902-7912 (2012).
13. Y. Pei, X. Shi, A. LaLonde, H. Wang, L. Chen, G. J. Snyder, Convergence of electronic bands for high performance bulk thermoelectrics. Nature 473, 66-69 (2011).
14. J. Yang, X. Zhang, G. Liu, L. Zhao, J. Liu, Z. Shi, J. Ding, G. Qiao, Multiscale structure and band configuration tuning to achieve high thermoelectric properties in n-type PbS bulks. Nano Energy 74, 104826 (2020).
15. W. Liu, L. Xu, Y. Xiao, L.-D. Zhao, Strategies to advance earth-abundant PbS thermoelectric. Chemical Engineering Journal 465, 142785 (2023).
16. H. Wang, E. Schechtel, Y. Pei, G. J. Snyder, High thermoelectric efficiency of n‐type PbS. Advanced Energy Materials 3, 488-495 (2013).
17. Q. Zhang, Y. Xiao, L.-D. Zhao, E. Chere, Z. Ren, X. Zhang, C. Chang, E. Levin, in Advanced Thermoelectrics. (CRC Press, 2017), pp. 107-194.
18. Y. Tung, M. L. Cohen, Relativistic band structure and electronic properties of SnTe, GeTe, and PbTe. Physical Review 180, 823 (1969).
19. J. M. Skelton, S. C. Parker, A. Togo, I. Tanaka, A. Walsh, Thermal physics of the lead chalcogenides PbS, PbSe, and PbTe from first principles. Physical Review B 89, 205203 (2014).
20. J. Li, X. Zhang, Z. Chen, S. Lin, W. Li, J. Shen, I. T. Witting, A. Faghaninia, Y. Chen, A. Jain, Low-symmetry rhombohedral GeTe thermoelectrics. Joule 2, 976-987 (2018).
21. Z. M. Gibbs, H. Kim, H. Wang, R. L. White, F. Drymiotis, M. Kaviany, G. Jeffrey Snyder, Temperature dependent band gap in PbX (X= S, Se, Te). Applied Physics Letters 103, (2013).
22. Z. Z. Luo, S. Cai, S. Hao, T. P. Bailey, I. Spanopoulos, Y. Luo, J. Xu, C. Uher, C. Wolverton, V. P. Dravid, Strong valence band convergence to enhance thermoelectric performance in PbSe with two chemically independent controls. Angewandte Chemie International Edition 60, 268-273 (2021).
23. J. Bloem, F. Kröger, The pTx-phase diagram of the lead-sulphur system. Zeitschrift für Physikalische Chemie 7, 1-14 (1956).
24. J. Lin, R. Sharma, Y. Chang, The Pb-Se (lead-selenium) system. Journal of phase equilibria 17, 253-260 (1996).
25. J. Lin, K. Hsleh, R. Sharma, Y. Chang, The Pb-Te (lead-tellurium) system. Bulletin of Alloy Phase Diagrams 10, 340-347 (1989).
26. W.-F. Li, C.-M. Fang, M. Dijkstra, M. A. Van Huis, The role of point defects in PbS, PbSe and PbTe: a first principles study. Journal of Physics: Condensed Matter 27, 355801 (2015).
27. A. Walsh, Defect processes in a PbS metal organic framework: a quantum-confined hybrid semiconductor. The Journal of Physical Chemistry Letters 1, 1284-1287 (2010).
28. J. W. Doak, C. Wolverton, Coherent and incoherent phase stabilities of thermoelectric rocksalt IV-VI semiconductor alloys. Physical Review B 86, 144202 (2012).
29. M. Labidi, H. Meradji, S. Ghemid, S. Labidi, F. El Haj Hassan, Structural, Electronic, Optical and Thermodynamic Properties of PbS, PbSe and Their Ternary Alloy PbS1-xSex. Modern Physics Letters B 25, 473-486 (2011).
30. S. Kacimi, A. Zaoui, B. Abbar, B. Bouhafs, Ab initio study of cubic PbSxSe1− x alloys. Journal of alloys and compounds 462, 135-141 (2008).
31. J. Wang, H. Wang, G. Snyder, X. Zhang, Z. Ni, Y. Chen, Characteristics of lattice thermal conductivity and carrier mobility of undoped PbSe-PbS solid solutions. Journal of Physics D: Applied Physics 46, 405301 (2013).
32. H. Wang, J. Wang, X. Cao, G. J. Snyder, Thermoelectric alloys between PbSe and PbS with effective thermal conductivity reduction and high figure of merit. Journal of Materials Chemistry A 2, 3169-3174 (2014).
33. Y. Xiao, Routes to high-ranged thermoelectric performance. Mater. Lab 1, 1 (2022).
34. T. Chen, C. Foo, S. C. E. Tsang, Interstitial and substitutional light elements in transition metals for heterogeneous catalysis. Chemical Science 12, 517-532 (2021).
35. L. Zhao, J. Yang, B. Lu, X. Zhang, J. Hu, W. Xie, H. Shao, G. Liu, S. Hussain, Z. Shi, Enhanced thermoelectric properties of n-type Cl doped PbS-based materials via Bi alloying. Journal of Alloys and Compounds 859, 157788 (2021).
36. Y. Qin, Y. Xiao, L.-D. Zhao, Carrier mobility does matter for enhancing thermoelectric performance. APL Materials 8, 010901 (2020).
37. J. C. Slater, Atomic radii in crystals. The Journal of Chemical Physics 41, 3199-3204 (1964).
38. M. N. Rahaman, Ceramic processing and sintering. (CRC press, 2017), vol. 1.
39. B. Xu, T. Feng, Z. Li, S. T. Pantelides, Y. Wu, Constructing highly porous thermoelectric monoliths with high-performance and improved portability from solution-synthesized shape-controlled nanocrystals. Nano letters 18, 4034-4039 (2018).
40. K. Ueno, A. Yamamoto, T. Noguchi, T. Inoue, S. Sodeoka, H. Takazawa, C. Lee, H. Obara, Optimization of hot-press conditions of Zn4Sb3 for high thermoelectric performance: I. Physical properties and thermoelectric performance. Journal of alloys and compounds 384, 254-260 (2004).
41. Y.-L. Pei, Y. Liu, Electrical and thermal transport properties of Pb-based chalcogenides: PbTe, PbSe, and PbS. Journal of Alloys and Compounds 514, 40-44 (2012).
42. J. Ramage, R. Stradling, A. Aziza, M. Balkanski, Far infrared cyclotron absorption in n-type Pb1-xSnxSe. Journal of Physics C: Solid State Physics 8, 1731 (1975).
43. J. Sun, R. Wang, W. Cui, S. Xie, T. Luo, H. Bai, X. Zhao, Z. Chen, X. Sang, X. Tan, Percolation Process-Mediated Rich Defects in Hole-Doped PbSe with Enhanced Thermoelectric Performance. Chemistry of Materials 34, 6450-6459 (2022).
44. E. Rathore, R. Juneja, D. Sarkar, S. Roychowdhury, M. Kofu, K. Nakajima, A. K. Singh, K. Biswas, Enhanced covalency and nanostructured-phonon scattering lead to high thermoelectric performance in n-type PbS. Materials Today Energy 24, 100953 (2022).
45. J. Androulakis, D.-Y. Chung, X. Su, L. Zhang, C. Uher, T. C. Hasapis, E. Hatzikraniotis, K. M. Paraskevopoulos, M. G. Kanatzidis, High-temperature charge and thermal transport properties of the n-type thermoelectric material PbSe. Physical Review B 84, 155207 (2011).
46. H.-S. Kim, Z. M. Gibbs, Y. Tang, H. Wang, G. J. Snyder, Characterization of Lorenz number with Seebeck coefficient measurement. APL materials 3, (2015).
47. X. Du, Y. Wang, R. Shi, Z. Mao, Z. Yuan, Effects of anion and cation doping on the thermoelectric properties of n-type PbS. Journal of the European Ceramic Society 38, 3512-3517 (2018).
48. M. Zhao, C. Chang, Y. Xiao, L.-D. Zhao, High performance of n-type (PbS) 1-xy (PbSe) x (PbTe) y thermoelectric materials. Journal of Alloys and Compounds 744, 769-777 (2018).
49. Y. Xiao, L. Xu, T. Hong, H. Shi, S. Wang, X. Gao, X. Ding, J. Sun, L.-D. Zhao, Ultrahigh carrier mobility contributes to remarkably enhanced thermoelectric performance in n-type PbSe. Energy & Environmental Science 15, 346-355 (2022).
50. Z.-Z. Luo, S. Hao, S. Cai, T. P. Bailey, G. Tan, Y. Luo, I. Spanopoulos, C. Uher, C. Wolverton, V. P. Dravid, Enhancement of thermoelectric performance for n-type PbS through synergy of gap state and fermi level pinning. Journal of the American Chemical Society 141, 6403-6412 (2019).