簡易檢索 / 詳目顯示

研究生: 陳柏樺
Chen, Bo-Hua
論文名稱: Hsc70/Stub1對氧化壓力下過氧化體清除機制之探討
Hsc70/Stub1 drives individual turnover of oxidatively-stressed peroxisomes
指導教授: 楊維元
Yang, Wei Yuan
呂平江
Lyu, Ping-Chiang
口試委員: 陳光超
Chen, Guang-Chao
顏雪琪
Yen, Hsueh-Chi Sherry
陳瑞華
Chen, Ruey-Hwa
學位類別: 博士
Doctor
系所名稱: 生命科學暨醫學院 - 生物資訊與結構生物研究所
Institute of Bioinformatics and Structural Biology
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 92
中文關鍵詞: 氧化壓力過氧化體胞器品質控管抗壓蛋白分子監護子細胞自噬
外文關鍵詞: peroxisomes, pexophagy, organelle, Heat shock protein 70, Hsp70, roGFP2, Stub1
相關次數: 點閱:70下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中文摘要
    過氧化體參與非常長鏈脂肪酸與支鏈脂肪酸的氧化降解,此降解過程在過氧化體內產生活性氧化物質,因此過氧化體特別容易受到氧化損傷。細胞中很可能存在過氧化體的品質控管機制但目前並未被清楚了解。我們藉由光在活細胞中選定部分的過氧化體內產生氧化壓力進而發現細胞會選擇性地清除在氧化壓力下的過氧化體,此清除過程需要泛素。細胞需要藉由抗壓蛋白分子監護子70 (Heat shock protein 70s)將E3泛素連結酶Stub1帶到氧化壓力下的過氧化體而讓Stub1進行泛素化與促進細胞自噬清除機制來清除氧化壓力下的過氧化體。 我們也人為地將E3泛素連結酶Stub1標靶到健康的過氧化體上就足以讓Stub1對過氧化體進行泛素化與促進過氧化體細胞自噬的能力。我們發現其中細胞自噬銜接蛋白p62在此過氧化體細胞自噬的重要性,E3泛素連結酶Stub1可能一部分透過徵集p62到氧化壓力下的過氧化體上而促進氧化壓力下之過氧化體被細胞自噬機制清除。我們發現造成遺傳性小腦性運動失調(autosomal recessive cerebellar ataxia, ARCA)相關的突變型Stub1無法促進此氧化壓力下的過氧化體細胞自噬。降低細胞Stub1的表現,隨著時間會增加細胞中高氧化壓力的過氧化體之比例。因此在遺傳性小腦性運動失調疾病(autosomal recessive cerebellar ataxia, ARCA)中,我們的發現為不正常的過氧化體品質控管參與了疾病的發展提供了可能性。


    Abstract

    Peroxisomes carry out beta-oxidation of branched and very-long chain fatty acids, which leads to the formation of reactive oxygen species (ROS) within the peroxisomal lumen. Peroxisomes are therefore prone to ROS-mediated damages. The control of peroxisome quality should exist but is not well-understood. By using light to specifically and acutely induce ROS formation within the peroxisomal lumen, we found that cells can individually turnover ROS-stressed peroxisomes through ubiquitin-dependent pexophagy. Heat shock protein 70s mediated the translocation of the ubiquitin E3 ligase Stub1 (STIP1 Homology And U-Box Containing Protein 1) onto oxidatively-stressed peroxisomes to drive their selective ubiquitination and autophagic degradation. Artificially targeting Stub1 to healthy peroxisomes was sufficient to trigger pexophagy, suggesting a key role Stub1 plays in regulating peroxisome quality. Our data indicated that p62 is one of the pivotal autophagic adaptors for stub1 to recruit autophagosome marker LC3. We further determined that Stub1 mutants found in Ataxia patients were defective in their abilities to trigger pexophagy. Stub1-depletion increased the fraction of oxidative peroxisomes in cells. Dysfunctional peroxisomal quality control may therefore contribute to the development of Ataxia.

    Table of contents 中文摘要........................................................¬1 Abstract............................................................2 Table of contents.....................................................3 Introduction..........................................................9 1. Reactive Oxygen Species (ROS).......................................9 2. ROS regulation in peroxisomes.......................................10 2.1. ROS producing in peroxisomes..................................10 2.2. ROS scavenging in peroxisomes.................................11 2.3. Peroxisomes are essential organelles for cell metabolism..............12 3. Peroxisome quality control..........................................15 4. Hsp70/Stub1 in protein quality control system.......................... 16 4.1 Hsp70 chaperones............................................ 16 4.2 Stub1, the Hsp70 chaperone-dependent E3 ligase.................... 17 4.2.1 Stub1 in ubiquitination system.............................. 17 4.2.2 Hsp70 and chaperone-assisted selective autophagy (CASA)....... 19 Results.............................................................. 22 Stressing peroxisomes with ROS through peroxisome-targeted KillerRed...... 22 Ubiquitin-dependent pexophagy on ROS-stressed peroxisomes...............22 Stub1 translocated onto ROS-stressed peroxisomes........................24 Heat shock protein 70s mediated Stub1 translocation onto ROS-stressed peroxisomes...................................................... 26 Depleting Stub1 results in cellular accumulation of impaired peroxisomes.......27 Ataxia-related Stub1 mutants are defective in their ability to signal ubiquitin-dependent pexophagy............................................... 28 Discussion........................................................... 29 Materials and methods................................................ 31 Plasmids......................................................... 31 RNA interference.................................................. 32 Cell culture conditions...............................................33 SDS-PAGE and Western blot..........................................33 Quantifying peroxisomal redox potential................................34 Quantification of peroxisomal EGFP-LC3B following damage...............35 Monitoring turnover of damaged peroxisomes............................35 Targeting Cry2-mCherry-Stub1 to healthy peroxisomes.....................36 Immunofluorescence assay for LED-illuminated NIH3T3 cells on confocal dish.............................................................36 Figures............................................................. 38 Fig. 1. The schematic of how we trigger ROS-generation specifically within the peroxisomal lumen. .................................................38 Fig. 2. Light illumination specifically generated ROS within the peroxisome lumen. ...........................................................39 Fig. 3. The fluorescence of EGFP-PTS1 was not affected by 559 nm illumination. ......................................................40 Fig. 4. ROS-stressed peroxisomes accumulated ubiquitination. ...............41 Fig. 5. ROS-stressed peroxisomes accumulated autophagy adaptor p62. ........42 Fig. 6. Autophagic membrane marker LC3 colocalized with ROS-stressed peroxisomes. ......................................................43 Fig. 7. Entering acidic environments was demonstrated by the loss of EGFP signal from PMP34-EGFP-TagBFP2 labeled and ROS-stressed peroxisomes. ........44 Fig. 8. ROS-stressed peroxisomes colocalized with lysosomes indicated by Lamp1-mGFP. ...........................................................45 Fig. 9. Turnover of ROS-stressed peroxisomes required functional lysosomes. .......................................................46 Fig. 10. Reporter construct EGFP-Stub1 translocated onto ROS-stressed peroxisomes. ......................................................47 Fig. 11. EGFP-Stub1 did not translocate onto ROS-stressed mitochondria. ......48 Fig. 12. Scheme to target Stub1 onto non-stressed peroxisomes. ..............49 Fig. 13. Targeting Stub1 onto non-stressed peroxisomes by CRY2-CIBN dimerization induced EGFP-LC3B accumulation. .........................50 Fig. 14. Targeting CRY2-mCherry-Stub1 onto peroxisomes induced peroxisomal ubiquitination. .....................................................51 Fig. 15. Targeting CRY2-mCherry alone onto peroxisomes did not trigger peroxisomal ubiquitination. ..........................................52 Fig. 16. Targeting E3 ligase dead CRY2-mCherry-Stub1 H261Q to peroxisomes did not result in LC3B translocation. .......................................53 Fig. 17. Overexpressing Stub1 ligase dead mutant H261Q blocks cellular turnover of ROS-stressed peroxisomes. ........................................54 Fig. 18. Stub1 is required for EGFP-LC3B accumulation onto ROS-stressed peroxisomes. ......................................................55 Fig. 19. Depleting NIH3T3 cellular p62 delayed LC3 accumulation onto ROS-stressed peroxisomes. ...............................................56 Fig. 20. Knockdown of Stub1 delayed p62 accumulation onto ROS-stressed peroxisomes. ......................................................57 Fig. 21. Stub1 K31A mutant was unable to translocate onto ROS-stressed peroxisomes. ......................................................58 Fig. 22. EGEP-Hsp70 accumulated onto ROS-stressed peroxisomes. ..........59 Fig. 23. EGFP-Hsc70 similarly accumulated onto ROS-stressed peroxisomes. ...60 Fig. 24. Co-chaperone reporter construct EGFP-Hsp40 accumulated on ROS-stressed peroxisomes. ...............................................61 Fig. 25. Binding to Stub1 is not required for EGFP-Hsp70 translocation. ........62 Fig. 26. Efficiencies of the Hsp70 and Hsc70 siRNAs utilized in this paper. ......63 Fig. 27. Hsc70/Hsp70 are required for EGFP-LC3B accumulation onto ROS-stressed peroxisomes. ......................................................64 Fig. 28. Hsp70 inhibitor PES-Cl blocks EGFP-Hsp70 translocation onto ROS-stressed peroxisomes. ...............................................65 Fig. 29. Hsp70 inhibitor PES-Cl blocks EGFP-Hsc70 translocation onto ROS-stressed peroxisomes. ...............................................66 Fig. 30. Hsp70 inhibitor PES-Cl prohibits EGFP-Stub1 translocation onto ROS-stressed peroxisomes. ...............................................67 Fig. 31. PES-Cl inhibited EGFP-LC3B translocation onto ROS-stressed peroxisomes. ......................................................68 Fig. 32. Probing redox states of each peroxisome by a reporter construct roGFP2-PTS1. ...........................................................69 Fig. 33. Depletion of Stub1 increased the number and fraction of high redox state peroxisomes in cell. .................................................70 Fig. 34. Depletion of Stub1 increased the fraction of high redox state peroxisomes in cell with time. ...................................................71 Fig. 35. Peroxisome quality is compromised by depleting endogenous Hsc70/Hsp70. .....................................................72 Fig. 36. Table: Testing whether Ataxia-related Stub1 mutants translocate onto ROS-stressed peroxisomes................................................73 Fig. 37. Overexpressing Ataxia-related Stub1 mutants diminishes LC3B recruitment onto ROS-stressed peroxisomes. .......................................74 Fig. 38. Endogenous Stub1 translocated onto ROS-stressed peroxisomes. ......75 Fig. 39. Endogenous ubiquitin accumulated onto ROS-stressed peroxisomes. ....76 Fig. 40. Endogenous autophagy adaptor p62 accumulated onto ROS-stressed peroxisomes. ......................................................77 Fig. 41. Endogenous autophagosome marker LC3B accumulated onto ROS-stressed peroxisomes. ......................................................78 Fig. 42. EGFP-Stub1 was translocated onto peroxisomes continuously ROS-stressed by LED illumination. ...............................................79 Fig. 43. Peroxisomes continuously ROS-stressed by LED illumination accumulated EGFP-p62. .......................................................80 Fig. 44. EGFP-LC3B was translocated onto peroxisomes continuously ROS-stressed by LED illumination. ...............................................81 Fig. 45. EGFP-Stub1 was translocated onto peroxisomes ROS-stressed by illuminating the peroxisome-localized TMR HaloTag ligand. ................82 Fig. 46. TMR HaloTag-PTS1 targeting accompanied by continuous LED illumination successfully induced peroxisome damage indicated by EGFP-Ub accumulation. .....................................................83 Fig. 47. Endogenous ROS caused peroxisome damage indicated by translocated EGFP-Stub1. ......................................................84 Acknowledgements....................................................85 Abbreviations........................................................85 References...........................................................86

    Reference

    1 Chen, Y., Azad, M. B. & Gibson, S. B. Superoxide is the major reactive oxygen species regulating autophagy. Cell death and differentiation 16, 1040-1052, doi:10.1038/cdd.2009.49 (2009).
    2 Cannizzo, E. S. et al. Age-related oxidative stress compromises endosomal proteostasis. Cell reports 2, 136-149, doi:10.1016/j.celrep.2012.06.005 (2012).
    3 Goepfert, S. & Poirier, Y. Beta-oxidation in fatty acid degradation and beyond. Current opinion in plant biology 10, 245-251, doi:10.1016/j.pbi.2007.04.007 (2007).
    4 Boveris, A., Oshino, N. & Chance, B. The cellular production of hydrogen peroxide. Biochemical Journal 128, 617-630 (1972).
    5 Foyer, C. H. & Noctor, G. Redox sensing and signalling associated with reactive oxygen in chloroplasts, peroxisomes and mitochondria. Physiologia plantarum 119, 355-364 (2003).
    6 Stuehr, D. J., Pou, S. & Rosen, G. M. Oxygen reduction by nitric oxide synthases. Journal of Biological Chemistry (2001).
    7 Schrader, M. & Fahimi, H. D. Peroxisomes and oxidative stress. Biochimica et biophysica acta 1763, 1755-1766, doi:10.1016/j.bbamcr.2006.09.006 (2006).
    8 Holmstrom, K. M. & Finkel, T. Cellular mechanisms and physiological consequences of redox-dependent signalling. Nature reviews. Molecular cell biology 15, 411-421, doi:10.1038/nrm3801 (2014).
    9 Antonenkov, V. D., Grunau, S., Ohlmeier, S. & Hiltunen, J. K. Peroxisomes are oxidative organelles. Antioxidants & redox signaling 13, 525-537, doi:10.1089/ars.2009.2996 (2010).
    10 Elsner, M., Gehrmann, W. & Lenzen, S. Peroxisome generated hydrogen peroxide as important mediator of lipotoxicity in insulin-producing cells. Diabetes (2010).
    11 López‐Erauskin, J. et al. Antioxidants halt axonal degeneration in a mouse model of X‐adrenoleukodystrophy. Annals of neurology 70, 84-92 (2011).
    12 Ahlemeyer, B., Gottwald, M. & Baumgart-Vogt, E. Deletion of a single allele of the Pex11β gene is sufficient to cause oxidative stress, delayed differentiation and neuronal death in mouse brain. Disease models & mechanisms 5, 125-140 (2012).
    13 Góth, L., Rass, P. & Páy, A. Catalase enzyme mutations and their association with diseases. Molecular Diagnosis 8, 141-149 (2004).
    14 Oruqaj, G. et al. Compromised peroxisomes in idiopathic pulmonary fibrosis, a vicious cycle inducing a higher fibrotic response via TGF-beta signaling. Proceedings of the National Academy of Sciences of the United States of America 112, E2048-2057, doi:10.1073/pnas.1415111112 (2015).
    15 Santos, M. J. et al. Peroxisomal proliferation protects from beta-amyloid neurodegeneration. The Journal of biological chemistry 280, 41057-41068, doi:10.1074/jbc.M505160200 (2005).
    16 Zhang, J. et al. A tuberous sclerosis complex signalling node at the peroxisome regulates mTORC1 and autophagy in response to ROS. Nature cell biology 15, 1186-1196, doi:10.1038/ncb2822 (2013).
    17 Purdue, P. E. & Lazarow, P. B. Peroxisome biogenesis. Annual review of cell and developmental biology 17, 701-752, doi:10.1146/annurev.cellbio.17.1.701 (2001).
    18 Smith, J. J. & Aitchison, J. D. Peroxisomes take shape. Nature reviews. Molecular cell biology 14, 803-817, doi:10.1038/nrm3700 (2013).
    19 Weller, S., Gould, S. J. & Valle, D. Peroxisome biogenesis disorders. Annual review of genomics and human genetics 4, 165-211, doi:10.1146/annurev.genom.4.070802.110424 (2003).
    20 Reuber, B. E. et al. Mutations in PEX1 are the most common cause of peroxisome biogenesis disorders. Nature genetics 17, 445-448, doi:10.1038/ng1297-445 (1997).
    21 Faust, P. L. & Hatten, M. E. Targeted deletion of the PEX2 peroxisome assembly gene in mice provides a model for Zellweger syndrome, a human neuronal migration disorder. The Journal of cell biology 139, 1293-1305 (1997).
    22 Baes, M. et al. A mouse model for Zellweger syndrome. Nature genetics 17, 49-57, doi:10.1038/ng0997-49 (1997).
    23 Baumgart, E. et al. Mitochondrial alterations caused by defective peroxisomal biogenesis in a mouse model for Zellweger syndrome (PEX5 knockout mouse). The American journal of pathology 159, 1477-1494, doi:10.1016/s0002-9440(10)62534-5 (2001).
    24 Dirkx, R. et al. Absence of peroxisomes in mouse hepatocytes causes mitochondrial and ER abnormalities. Hepatology (Baltimore, Md.) 41, 868-878, doi:10.1002/hep.20628 (2005).
    25 Singh, I. & Pujol, A. Pathomechanisms underlying X-adrenoleukodystrophy: a three-hit hypothesis. Brain pathology (Zurich, Switzerland) 20, 838-844, doi:10.1111/j.1750-3639.2010.00392.x (2010).
    26 Trompier, D. et al. Brain peroxisomes. Biochimie 98, 102-110, doi:10.1016/j.biochi.2013.09.009 (2014).
    27 Singh, I., Singh, A. K. & Contreras, M. A. Peroxisomal dysfunction in inflammatory childhood white matter disorders: an unexpected contributor to neuropathology. Journal of child neurology 24, 1147-1157, doi:10.1177/0883073809338327 (2009).
    28 De Munter, S., Verheijden, S., Regal, L. & Baes, M. Peroxisomal Disorders: A Review on Cerebellar Pathologies. Brain pathology (Zurich, Switzerland) 25, 663-678, doi:10.1111/bpa.12290 (2015).
    29 Luis, A. Peroxisomes as a cellular source of reactive nitrogen species signal molecules. Archives of Biochemistry and Biophysics 506, 1-11 (2011).
    30 Aksam, E. B. et al. A peroxisomal lon protease and peroxisome degradation by autophagy play key roles in vitality of Hansenula polymorpha cells. Autophagy 3, 96-105 (2007).
    31 Dunn, W. A., Jr. et al. Pexophagy: the selective autophagy of peroxisomes. Autophagy 1, 75-83 (2005).
    32 Till, A., Lakhani, R., Burnett, S. F. & Subramani, S. Pexophagy: the selective degradation of peroxisomes. International journal of cell biology 2012, 512721, doi:10.1155/2012/512721 (2012).
    33 Farre, J. C. & Subramani, S. Peroxisome turnover by micropexophagy: an autophagy-related process. Trends in cell biology 14, 515-523, doi:10.1016/j.tcb.2004.07.014 (2004).
    34 Cho, D. H., Kim, Y. S., Jo, D. S., Choe, S. K. & Jo, E. K. Pexophagy: Molecular Mechanisms and Implications for Health and Diseases. Molecules and cells 41, 55-64, doi:10.14348/molcells.2018.2245 (2018).
    35 Iwata, J. et al. Excess peroxisomes are degraded by autophagic machinery in mammals. The Journal of biological chemistry 281, 4035-4041, doi:10.1074/jbc.M512283200 (2006).
    36 Huybrechts, S. J. et al. Peroxisome dynamics in cultured mammalian cells. Traffic (Copenhagen, Denmark) 10, 1722-1733, doi:10.1111/j.1600-0854.2009.00970.x (2009).
    37 Stolz, A., Ernst, A. & Dikic, I. Cargo recognition and trafficking in selective autophagy. Nature cell biology 16, 495-501, doi:10.1038/ncb2979 (2014).
    38 Ivashchenko, O. et al. Intraperoxisomal redox balance in mammalian cells: oxidative stress and interorganellar cross-talk. Molecular biology of the cell 22, 1440-1451, doi:10.1091/mbc.E10-11-0919 (2011).
    39 Fernandez-Fernandez, M. R., Gragera, M., Ochoa-Ibarrola, L., Quintana-Gallardo, L. & Valpuesta, J. M. Hsp70 - a master regulator in protein degradation. FEBS letters 591, 2648-2660, doi:10.1002/1873-3468.12751 (2017).
    40 Pickrell, A. M. & Youle, R. J. The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson's disease. Neuron 85, 257-273, doi:10.1016/j.neuron.2014.12.007 (2015).
    41 Yoshida, Y. et al. Ubiquitination of exposed glycoproteins by SCF(FBXO27) directs damaged lysosomes for autophagy. Proceedings of the National Academy of Sciences of the United States of America 114, 8574-8579, doi:10.1073/pnas.1702615114 (2017).
    42 Hatakeyama, S., Yada, M., Matsumoto, M., Ishida, N. & Nakayama, K.-I. U box proteins as a new family of ubiquitin-protein ligases. Journal of Biological Chemistry 276, 33111-33120 (2001).
    43 Min, J. N. et al. CHIP deficiency decreases longevity, with accelerated aging phenotypes accompanied by altered protein quality control. Molecular and cellular biology 28, 4018-4025, doi:10.1128/mcb.00296-08 (2008).
    44 Jana, N. R. et al. Co-chaperone CHIP associates with expanded polyglutamine protein and promotes their degradation by proteasomes. The Journal of biological chemistry 280, 11635-11640, doi:10.1074/jbc.M412042200 (2005).
    45 Miller, V. M. et al. CHIP suppresses polyglutamine aggregation and toxicity in vitro and in vivo. The Journal of neuroscience : the official journal of the Society for Neuroscience 25, 9152-9161, doi:10.1523/jneurosci.3001-05.2005 (2005).
    46 Shin, Y., Klucken, J., Patterson, C., Hyman, B. T. & McLean, P. J. The co-chaperone carboxyl terminus of Hsp70-interacting protein (CHIP) mediates alpha-synuclein degradation decisions between proteasomal and lysosomal pathways. The Journal of biological chemistry 280, 23727-23734, doi:10.1074/jbc.M503326200 (2005).
    47 Morley, J. F. & Morimoto, R. I. Regulation of longevity in Caenorhabditis elegans by heat shock factor and molecular chaperones. Molecular biology of the cell 15, 657-664, doi:10.1091/mbc.E03-07-0532 (2004).
    48 Diefenbach, J. & Kindl, H. The membrane-bound DnaJ protein located at the cytosolic site of glyoxysomes specifically binds the cytosolic isoform 1 of Hsp70 but not other Hsp70 species. European journal of biochemistry 267, 746-754 (2000).
    49 Walton, P. A., Wendland, M., Subramani, S., Rachubinski, R. A. & Welch, W. J. Involvement of 70-kD heat-shock proteins in peroxisomal import. The Journal of cell biology 125, 1037-1046 (1994).
    50 Legakis, J. E. et al. Peroxisome senescence in human fibroblasts. Molecular biology of the cell 13, 4243-4255, doi:10.1091/mbc.E02-06-0322 (2002).
    51 Carra, S., Seguin, S. J., Lambert, H. & Landry, J. HSPB8 chaperone activity towards poly-Q containing proteins depends on its association with BAG3, a stimulator of macroautophagy. Journal of Biological Chemistry (2007).
    52 Arndt, V. et al. Chaperone-assisted selective autophagy is essential for muscle maintenance. Current Biology 20, 143-148 (2010).
    53 Nivon, M. et al. NF-kappaB regulates protein quality control after heat stress through modulation of the BAG3-HspB8 complex. Journal of cell science 125, 1141-1151, doi:10.1242/jcs.091041 (2012).
    54 Serebrovskaya, E. O. et al. Targeting cancer cells by using an antireceptor antibody-photosensitizer fusion protein. Proceedings of the National Academy of Sciences of the United States of America 106, 9221-9225, doi:10.1073/pnas.0904140106 (2009).
    55 Carpentier, P., Violot, S., Blanchoin, L. & Bourgeois, D. Structural basis for the phototoxicity of the fluorescent protein KillerRed. FEBS letters 583, 2839-2842, doi:10.1016/j.febslet.2009.07.041 (2009).
    56 Bulina, M. E. et al. A genetically encoded photosensitizer. Nature biotechnology 24, 95-99, doi:10.1038/nbt1175 (2006).
    57 Okamoto, K. Organellophagy: eliminating cellular building blocks via selective autophagy. The Journal of cell biology 205, 435-445, doi:10.1083/jcb.201402054 (2014).
    58 Klionsky, D. J. et al. Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy 8, 445-544 (2012).
    59 Subach, O. M., Cranfill, P. J., Davidson, M. W. & Verkhusha, V. V. An enhanced monomeric blue fluorescent protein with the high chemical stability of the chromophore. PloS one 6, e28674, doi:10.1371/journal.pone.0028674 (2011).
    60 Duan, C., Adam, V., Byrdin, M. & Bourgeois, D. Structural basis of photoswitching in fluorescent proteins. Methods in molecular biology (Clifton, N.J.) 1148, 177-202, doi:10.1007/978-1-4939-0470-9_12 (2014).
    61 Kennedy, M. J. et al. Rapid blue-light-mediated induction of protein interactions in living cells. Nature methods 7, 973-975, doi:10.1038/nmeth.1524 (2010).
    62 Ballinger, C. A. et al. Identification of CHIP, a novel tetratricopeptide repeat-containing protein that interacts with heat shock proteins and negatively regulates chaperone functions. Molecular and cellular biology 19, 4535-4545 (1999).
    63 Wu, S. J., Liu, F. H., Hu, S. M. & Wang, C. Different combinations of the heat-shock cognate protein 70 (hsc70) C-terminal functional groups are utilized to interact with distinct tetratricopeptide repeat-containing proteins. The Biochemical journal 359, 419-426 (2001).
    64 Balaburski, G. M. et al. A modified HSP70 inhibitor shows broad activity as an anticancer agent. Molecular cancer research : MCR 11, 219-229, doi:10.1158/1541-7786.mcr-12-0547-t (2013).
    65 Lismont, C., Walton, P. A. & Fransen, M. Quantitative Monitoring of Subcellular Redox Dynamics in Living Mammalian Cells Using RoGFP2-Based Probes. Methods in molecular biology (Clifton, N.J.) 1595, 151-164, doi:10.1007/978-1-4939-6937-1_14 (2017).
    66 Heimdal, K. et al. STUB1 mutations in autosomal recessive ataxias - evidence for mutation-specific clinical heterogeneity. Orphanet journal of rare diseases 9, 146, doi:10.1186/s13023-014-0146-0 (2014).
    67 Shi, Y. et al. Identification of CHIP as a novel causative gene for autosomal recessive cerebellar ataxia. PloS one 8, e81884, doi:10.1371/journal.pone.0081884 (2013).
    68 Synofzik, M. et al. Phenotype and frequency of STUB1 mutations: next-generation screenings in Caucasian ataxia and spastic paraplegia cohorts. Orphanet journal of rare diseases 9, 57, doi:10.1186/1750-1172-9-57 (2014).
    69 Bettencourt, C. et al. Clinical and Neuropathological Features of Spastic Ataxia in a Spanish Family with Novel Compound Heterozygous Mutations in STUB1. Cerebellum (London, England) 14, 378-381, doi:10.1007/s12311-014-0643-7 (2015).
    70 Kettern, N., Dreiseidler, M., Tawo, R. & Hohfeld, J. Chaperone-assisted degradation: multiple paths to destruction. Biological chemistry 391, 481-489, doi:10.1515/bc.2010.058 (2010).
    71 Kaushik, S. & Cuervo, A. M. Chaperones in autophagy. Pharmacological research 66, 484-493 (2012).
    72 Sahu, R. et al. Microautophagy of cytosolic proteins by late endosomes. Developmental cell 20, 131-139 (2011).
    73 Vilarinho, S. et al. ACOX2 deficiency: A disorder of bile acid synthesis with transaminase elevation, liver fibrosis, ataxia, and cognitive impairment. Proceedings of the National Academy of Sciences of the United States of America 113, 11289-11293, doi:10.1073/pnas.1613228113 (2016).
    74 Shibata, M. et al. Highly oxidized peroxisomes are selectively degraded via autophagy in Arabidopsis. The Plant cell 25, 4967-4983, doi:10.1105/tpc.113.116947 (2013).
    75 Lam, S. S. et al. Directed evolution of APEX2 for electron microscopy and proximity labeling. Nature methods 12, 51-54, doi:10.1038/nmeth.3179 (2015).

    QR CODE