簡易檢索 / 詳目顯示

研究生: 羅雲明
Yun-Ming Lo
論文名稱: 非冷卻式1550nm電制吸收調變雷射量子井設計與溫度特性之討論
Design of uncooled 1550nm EMLs and investigations on temperature characteristics
指導教授: 蕭高智
Kao-Chi Syao
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 光電工程研究所
Institute of Photonics Technologies
論文出版年: 2005
畢業學年度: 94
語文別: 中文
論文頁數: 83
中文關鍵詞: 電制吸收調變雷射電制吸收調變器非冷卻式
外文關鍵詞: EML, EAM, uncooled
相關次數: 點閱:41下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 電制吸收調變雷射(EML,Electroabsorption Modulated Laser)。有高速調變、低驅動電壓、可與雷射積體化、體積小等優點,符合都會光纖網路中光源的需求。而不須外加電熱致冷器就可以達到高溫度範圍的非冷卻式EML,是目前努力的目標之ㄧ。本論文旨在設計非冷卻式電制吸收調變器的量子井結構,並且量測分析實作元件的光電特性。在材料上採用有較佳溫度特性表現的AlGaInAs/InP系統,由兩次不同的設計方式,分別和1.55μm波段的FP以及DFB雷射做一積體整合,最後量測實作元件,比較其溫度特性和吸收表現上的優劣。
    由實驗結果發現,較深的量子井,較厚的位能障厚度,能得到較大的吸收效果和良好的溫度特性表現。推斷其原因,應該是這樣的結構有較強烈的QCSE效應,造成明顯的激子吸收峰值,這樣的現象可以從不同溫度下,0V的光電流吸收頻譜中觀察到。然而,較淺的量子井,可能犧牲了部分的吸收效果,但理論上應該可以降低chirp的效應,可惜我們尚未將元件封裝,實際量測比較量子井結構對chirp的影響。本論文最後提出了一個改良的量子井結構,如果能搭配元件B的積體整合方式,應該可以得到更佳的光電特性,希望未來可以驗證此結構的可行性。


    The electro-absorption modulated lasers(EMLs) has the advantage of high modulation speed、low drive voltage、integrated with lasers、small size. All of these are suitable to be the light source of metropolitan fiber network. Operating at a high temperature range without thermoelectric cooler (TEC) is the goals of this thesis. The work of this thesis includes the design of the uncooled quantum well structure and measures the optical characteristic of the devices. We use the AlGaInAs/InP material system in order to get the outstanding temperature characteristic. Two different EAM quantum well designs are integrated with 1.55μm FP and DFB laser respectively, and compare which one is better for the high temperature operation.
    According to the results, we find that the EAM has larger absorption and better performance of temperature when the quantum well is deeper and the thickness of the barrier is thicker. The reason is such structure has stronger QCSE so that we can observe the exciton absorption peak at different temperature with the zero bias. However, the shallower quantum well may have the smaller absorption, but it could reduce the chirp effects theoretically. We did not package the device yet,and measure the influence of the quantum well structure on chirp parameter. We expect to verify this point in the future.

    中文摘要 I 英文摘要 II 誌 謝 III 目錄 IV 圖目錄 VI 表目錄 IX 第一章 序論 1 1.1都會光纖網路 1 1.2研究動機 2 1.3論文架構 3 第二章 基本原理 4 2.1電制吸收效應的發展過程 4 2.2 Franz-Keldysh效應 5 2.3量子侷限史塔克效應(Quantum Confined Stark Effect,QCSE) 8 第三章 非冷卻式量子井結構設計 12 3.1 元件結構 12 3.1.1改良式共用主動層結構 12 3.1.2調變器與FP和DFB雷射整合設計 13 3.2 InAlGaAs/InP材料系統 17 3.3 應力型量子井能隙計算 18 3.4量子井結構與吸收表現之比較 26 3.4.1 載子在量子井中的存留時間 26 3.4.2 模擬不同量子井結構的表現 28 3.5 溫度對元件表現的影響 34 3.6 非冷卻式EML模擬 38 第四章 實驗結果與分析 51 4.1 製程步驟 51 4.2光激螢光光譜圖(Photoluminescence,PL) 56 4.3 雷射L-I 曲線和頻譜 59 4.4 光電流光譜圖 66 4.5 消光比(extinction ration,ER) 73 4.6 光場分佈 76 第五章 結論 80 參考資料 82

    [1] Pallab Bhattacharya,“Semiconductor Optoelectronic Devices,” 2nd.pp.133-82138,
    Prentice Hall, 1997
    [2] G. Bastard, E.E. Mendez, L.L. Chang, and L. Esaki, “Variationalcalculations on a quantum well in an electric field,” Phys. Rev. B, vol.28, No.6, pp. 3241-3245, 1983.
    [3] Hiroaki Takeuchi, Ken Tsuzuki, and Kenji Sato,"Very High-Speed Light-Source Module
    up to 40 Gb/s Containing an MQW Electroabsorption Modulator Integrated with a DFB
    Laser," IEEE J. Select. Topics Quantum Electron, 3, pp.336-343 ,1997
    [4] M. Aoki, M. Suzuki, H. Sano, T. Kawano, T. Ido, T. Taniwatari, K. Uomi and A. Takai,
    "InGaAs/InGaAsP MQW electroabsorption modulator integrated with a DFB laser
    fabricated by band-gap energy control selective area MOCVD,"Quantum Electronics,29
    pp. 2088-2096 ,1993.
    [5] A. Ramdane, P. Krauz, E. V. K. Rao, A. Hamoudi, A. Ougazzaden, D. Robein,
    A. Gloukhian, and M. Carre,“ Monolithic integration of InGaAsP-InP strained-layer distributed feedback laser and external modulator by selective quantum-well interdiffusion," IEEE Photon. Technol. Lett., 7,1995.
    [6] K. Sato, I. Kotaka, K. Wakita, Y. Kondo and M. Yamamoto, " Strained-InGaAsP MQW
    electroabsorption modulator integrated DFB laser," Electronics Lett.29, pp. 1087-1089 1993.
    [7] B. Stegmuller, R. Gessner, F. Kunkel, J .Rieger, M. Schier, J. Walter, and E. Baur, "Integrated 1.55μm and 1.3μm DFB Laser-electro absorption modulators with identical
    active layer structure composed of two QW types,"Optoelectronic and Microelectronic Materials and Devices, pp. 6-8 Dec. 2000.
    [8] Selmic, S.R. Chou, T.-M.; Sih, J.P.; Kirk, J.B.; Mantie, A.; Butler, J.K.; Bour, D.; Evans, G.A.“Design and characterization of 1.3-μm AlGaInAs-InP multiple quantum well lasers,” IEEE Journal on Selected Topics in Quantum Electronics,v7,n2,March/April, pp. 340-349,2001.
    [9] T. Higashi et al., “Observation of reduced nonradiative current in 1.3- μmAlGaInAs-InP strained MQW lasers,” IEEE Photon. Technol. Lett., vol.11, pp. 409–411, Apr. 1999.
    [10] M. Yamada et al., “High temperature characteristics of 1.3-μm InAsPInAlGaAs Ridge waveguide lasers,” IEEE Photon. Technol. Lett., vol. 11,pp. 164–166, Feb. 1999.
    [11] Minch, J., Park, S.H.; Keating, T.; Chuang, S.L. “Theory and Experiment of and Long-Wavelength Strained Quantum-Well Lasers,” IEEE Journal of Quantum Electronics, v35, n5, May,p 771-782, 1999.
    [12]A. Mark Fox, David A. B. Miller, J. E. Cunningham, and Willianm Y. Jan., ”Quantum Well Carrier Sweep Out: Relation to Electroabsorption and Exciton Saturation,” IEEE Journal of Quantum Electronics, v27, n10, Oct,1991.
    [13] G. L. Li, P. K. L. Yu, “Optical Intensity Modulators for Digital and Analog Applications”, JOURNAL OF LIGHTWAVE TECHNOLOGY.
    [14]H. Mathieu, P. Lefebvre, P. Christol, “Simple analytical method for calculating exciton
    binding energies in semiconductor quantum wells”, Phys. Rev. B 46, 4092-4101,v46, 1992.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE