研究生: |
曾建源 Chien-Yuen Tseng |
---|---|
論文名稱: |
4H-碳化矽NPN雙載子電晶體熱效應模擬與模型之建立 Simulation and Modeling of Thermal Effects in 4H-SiC NPN BJTs |
指導教授: |
黃智方
Chih-Fang Hunag |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2007 |
畢業學年度: | 96 |
語文別: | 中文 |
論文頁數: | 88 |
中文關鍵詞: | 碳化矽 、雙載子電晶體 、電流增益 、自熱效應 、SPICE |
外文關鍵詞: | SiC, BJT, Current gain, Self-heating, SPICE |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文透過模擬和量測探討4H-SiC NPN BJT的特性,分析不同元件結構和材料參數對共射極電流增益的影響,從模擬結果發現表面復合速度、載子存活時間和基極金屬接點位置對共射極電流增益有非常大的影響。而模擬和量測發現元件在均溫高溫的情況下,共射極電流增益將因為基極摻雜離子化增加而下降,導通電阻將因電子遷移率下降而增加。並模擬高集極電流密度下,探討共射極電流增益受到Rittner效應、Kirk效應和飽和效應而有所下降。之後利用動態電路模擬和量測元件因功率消耗所造成的自熱效應。最後將電流分佈不平均效應加入SPICE中,建立SPICE DC熱效應等效電路,並比較模擬和量測的特性取線,包含IV、Gummel-Plot和熱暫態圖形。
In this thesis, the characteristics of 4H-SiC NPN BJTs with thermal effects are studied by simulation and measurement. The effects of device features and material properties on common emitter current gain are examined. The simulation results show that the recombination velocity at the surface of the emitter and the base, carrier lifetime in the base, and the location of the base contact have significant effects on the current gain. Simulation shows that current gain decreases at high temperatures due to the enhancement of p-type ionization percentage in the base and that Ron decreases due to reduction of mobility at high temperatures. Decreasing of current gain at high JC which results from Rittner effect, Kirk effect and saturation effect is discussed. Self-heating due to power dissipation in the device is simulated and compared with measurement. Finally, a SPICE DC equivalent circuit model with thermal effects included is constructed to model IV curves, Gummel-plot and thermal transients of fabricated devices.
[1] R. Singh, J. A. Cooper, Jr., M. R. Melloch, T. P. Chow, and J. W. Palmour, “SiC Power Schottky and PiN Diodes,” IEEE Trans. Electron Devices, vol. 49, no. 4, Apr. 2002.
[2] C. E. Weitzel, J. W. Palmour, C. H. Carter, Jr., K. Moore, K. J. Nordquist, S. Allen, C. Thero, and M. Bhatnagar, “Silicon Carbide High-Power Devices,” IEEE Trans. Electron Devices, vol. 43, no. 10, Oct. 1996, pp. 1732-1741.
[3] J. Richmond, S. H. Ryu, M. Das, S. Krishnaswami, S. Hodge Jr., A. Agarwal and J. Palmour, ”An Overview of Cree Silicon Carbide Power Devices,” Presented at 8th Workshop on Power Electronics in Transportation(WPET 2004), Sheraton Detroit Novi, Michign, USA , pp 37-42, Oct. 2004.
[4] J. Millán, P. Godign on, and D. Tournier, “Recent Development in SiC Power Devices and Related Technology,” Proc. 24th International Conference on Microelectronics (MIEL 2004), Serbia and Montenegro, Vol. 1, NIS, pp. 16-19, 2004.
[5] A. R. Powell and L. B. Rowland, “SiC Material-Progress Status and Potential Roadblocks,” IEEE Proc., vol. 60, pp. 942-955, 2002.
[6] H. S. Lee, “High Power Bipolar Junction Transistors in Silicon Carbide,” ISRN KTH/EKT/FR-2005/6-SE.
[7] J. Bardeen and W. H. Brattain, “The transistor, a semiconductor triode,” Phys. Rev., vol.75, pp. 1208-1225, Apr. 1949.
[8] W. Shockley, “The theory of p-n junctions in semiconductors and p-n junction transistors,” Bell Syst. Tech. J., vol. 28, pp. 435-489, July 1949.
[9] P.A. Ivanov, M.E. Levinshtein, A. Agarwal, S. Krishnaswami, and J. Palmour, “Analysis of the effect of temperature on base current gain in power 4H-SiC BJTs,” Materials Science Forum, Vols. 527-529 2006 pp. 1441-1444
[10] M. Domeij, E. Danielsson, W. Liu, U. Zimmermann, C-M. Zetterling, and M. Ostling, “Measurements and simulations of self-heating and switching with 4H-SIC power BJTs,” in IEEE ISPSD’2003, 2003, pp.375-378.
[11] B. J. Baliga, Power Semiconductor Devices. Boston, MA:PWS,1996.
[12] A. Elasser, M. Ghezzo, N. Krishnamurthy, J. Kretchmer, A. W. Clock, D. M. Brown, and T. P. Chow, “Switching characteristics of silicon carbide power PIN diodes,” Solid-State Electron, vol. 44, no. 2, pp. 317-323, Feb. 2000.
[13] J. Wang, and B.W. Williams, “4H-SiC npn power bipolar junction transistor,” Semiconductor Science and Technology, vol. 14, no. 12, pp. 1088-1097, Dec. 1999.
[14] M. Roschke, and F. Schwierz, “Electron Mobility Models for 4H, 6H, and 3C SiC,” IEEE Trans. Electron Devices, vol. 48, no. 7, pp. 1442-1447, July 2001.
[15] X. Li, Y. Luo, L. Fursin, J.H. Zhao, M. Pan, P. Alexandrov, and M. Weiner, “On the temperature coefficient of 4H-SiC BJT current gain,” Solid-State Electronics, vol. 47, no. 2, pp. 233-239, Feb. 2003.
[16] M. Ikeda, H. Matsunami, and T. Tanaka, “Site effect on the impurity levels in 4H, 6H, and 15R SiC,” Phys. Rev. vol. 22, no. 3, pp. 2842-2854, Sep. 1980.
[17] D. Morelli, J. Hermans, C. Beetz, W.S. Woo, G.L. Harris, and C. Taylor, Silicon Carbide and Related Materials Eds. Spencer, M.G., et al., Institute of Physics Conference Series N137, pp. 313-316, 1993.
[18] S. Ryu, A. K. Agarwal, R. Singh, and J.W. Palmour, “1800 V npn bipolar junction transistors in 4H-SiC,” IEEE Electron. Device Lett., vol. 22, no. 3, pp. 124–126, Mar. 2001.
[19] C. Huang, and J. A. Cooper Jr., “4H-SiC bipolar junction transistors with BVCEO>3,200V,” in Proc. ISPSD, pp. 57-60, 2002.
[20] Pavel A. Ivanov, Michael E. Levinshtein, Anant K. Agarwal, Sumi Krishnaswami, and John W. Palmour, “Temperature dependence of the current gain in power 4H-SiC NPN BJTs,” IEEE Transactions on Electron Devices, vol. 53, no. 5, pp. 1245-1249, May. 2006.
[21] “Medici user’s manual, version 2003.6,” Synopsys, Inc., 2003.
[22] H. K. Gummel, and H. C. Poon, “An integrated charge control model of bipolar transistors,” Bell Syst. Tech. J., vol. 49, pp. 827-852, 1970.
[23] A.Vladimirescu, Kaihe Zhang, A.R.Newton, D.O.Pederson, and A.Sangiovanni-Vincentelli, “SPICE Version 2G User’s Guide,” Department of Electrical Engineering and Computer Sciences University of California Berkeley, Ca., 94720, Aug. 1981.
[24] William Liu, “Handbook of III-V Heterojunction Bipolar Transistors, ” John Wiley & Sons, pp. 1088-1090, 1998.