簡易檢索 / 詳目顯示

研究生: 曾建源
Chien-Yuen Tseng
論文名稱: 4H-碳化矽NPN雙載子電晶體熱效應模擬與模型之建立
Simulation and Modeling of Thermal Effects in 4H-SiC NPN BJTs
指導教授: 黃智方
Chih-Fang Hunag
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2007
畢業學年度: 96
語文別: 中文
論文頁數: 88
中文關鍵詞: 碳化矽雙載子電晶體電流增益自熱效應SPICE
外文關鍵詞: SiC, BJT, Current gain, Self-heating, SPICE
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文透過模擬和量測探討4H-SiC NPN BJT的特性,分析不同元件結構和材料參數對共射極電流增益的影響,從模擬結果發現表面復合速度、載子存活時間和基極金屬接點位置對共射極電流增益有非常大的影響。而模擬和量測發現元件在均溫高溫的情況下,共射極電流增益將因為基極摻雜離子化增加而下降,導通電阻將因電子遷移率下降而增加。並模擬高集極電流密度下,探討共射極電流增益受到Rittner效應、Kirk效應和飽和效應而有所下降。之後利用動態電路模擬和量測元件因功率消耗所造成的自熱效應。最後將電流分佈不平均效應加入SPICE中,建立SPICE DC熱效應等效電路,並比較模擬和量測的特性取線,包含IV、Gummel-Plot和熱暫態圖形。


    In this thesis, the characteristics of 4H-SiC NPN BJTs with thermal effects are studied by simulation and measurement. The effects of device features and material properties on common emitter current gain are examined. The simulation results show that the recombination velocity at the surface of the emitter and the base, carrier lifetime in the base, and the location of the base contact have significant effects on the current gain. Simulation shows that current gain decreases at high temperatures due to the enhancement of p-type ionization percentage in the base and that Ron decreases due to reduction of mobility at high temperatures. Decreasing of current gain at high JC which results from Rittner effect, Kirk effect and saturation effect is discussed. Self-heating due to power dissipation in the device is simulated and compared with measurement. Finally, a SPICE DC equivalent circuit model with thermal effects included is constructed to model IV curves, Gummel-plot and thermal transients of fabricated devices.

    摘要....................................................I Abstract...............................................II 致謝..................................................III 目錄...................................................VI 圖目錄...............................................VIII 表目錄................................................XII 第一章 序論..........................................1 1.1 前言.............................................1 1.2 碳化矽材料介紹與應用.............................1 1.3 研究動機與文獻回顧...............................2 1.4 論文大綱.........................................4 第二章 雙載子電晶體物理特性.............................8 2.1 雙載子電晶體基本操作原理...........................8 2.2 電流增益..........................................10 2.3 崩潰機制..........................................12 2.4 不理想效應........................................13 2.4.1 高注入效應...........................13 2.4.2 Kirk效應............................15 2.4.3 電流擁擠.............................16 第三章 4H-SiC NPN BJT特性模擬..........................24 3.1 4H-SiC材料參數模型...............................24 3.1.1 能隙(bandgap)模型..........................24 3.1.2 遷移率(mobility)模型.......................25 3.1.3 不完全游離(incomplete ionization)模型......26 3.1.4 熱傳導係數(thermal conductivity)模型.......26 3.2 4H-SiC NPN BJT模擬結構............................27 3.3 影響共射極電流增益的因素..........................28 3.3.1 表面復合速度(surface recombination velocity) ....28 3.3.2 載子存活時間(carrier lifetime) ..................28 3.3.3 基極金屬接點位置.................................29 3.4 不理想效應........................................29 3.5 溫度特性..........................................30 3.6 自熱效應(self-heating effect) ....................32 第四章 包含熱效應之4H-SiC NPN BJT DC SPICE模型研究.....49 4.1 SPICE Gummel Poon簡介.............................49 4.2 SGP DC模型參數定義................................50 4.3 4H-SiC NPN BJT SGP模型參數之萃取..................50 4.3.1 電流參數萃取................................50 4.3.2 寄生電阻萃取................................51 4.4 4H-SiC NPN BJT SGP DC等效模型.....................52 4.4.1溫度對寄生電阻的關係.........................52 4.4.2溫度對共射電流增益的關係.....................53 4.4.3 SPICE等效電路...............................53 第五章 結論與未來展望..................................70 5.1 結論...............................................70 5.2 未來展望...........................................71 參考文獻...............................................72 附錄A 4H-SiC NPN BJT Medici模擬程式碼.................74 附錄B DC SPICE模擬程式碼..............................86

    [1] R. Singh, J. A. Cooper, Jr., M. R. Melloch, T. P. Chow, and J. W. Palmour, “SiC Power Schottky and PiN Diodes,” IEEE Trans. Electron Devices, vol. 49, no. 4, Apr. 2002.
    [2] C. E. Weitzel, J. W. Palmour, C. H. Carter, Jr., K. Moore, K. J. Nordquist, S. Allen, C. Thero, and M. Bhatnagar, “Silicon Carbide High-Power Devices,” IEEE Trans. Electron Devices, vol. 43, no. 10, Oct. 1996, pp. 1732-1741.
    [3] J. Richmond, S. H. Ryu, M. Das, S. Krishnaswami, S. Hodge Jr., A. Agarwal and J. Palmour, ”An Overview of Cree Silicon Carbide Power Devices,” Presented at 8th Workshop on Power Electronics in Transportation(WPET 2004), Sheraton Detroit Novi, Michign, USA , pp 37-42, Oct. 2004.
    [4] J. Millán, P. Godign on, and D. Tournier, “Recent Development in SiC Power Devices and Related Technology,” Proc. 24th International Conference on Microelectronics (MIEL 2004), Serbia and Montenegro, Vol. 1, NIS, pp. 16-19, 2004.
    [5] A. R. Powell and L. B. Rowland, “SiC Material-Progress Status and Potential Roadblocks,” IEEE Proc., vol. 60, pp. 942-955, 2002.
    [6] H. S. Lee, “High Power Bipolar Junction Transistors in Silicon Carbide,” ISRN KTH/EKT/FR-2005/6-SE.
    [7] J. Bardeen and W. H. Brattain, “The transistor, a semiconductor triode,” Phys. Rev., vol.75, pp. 1208-1225, Apr. 1949.
    [8] W. Shockley, “The theory of p-n junctions in semiconductors and p-n junction transistors,” Bell Syst. Tech. J., vol. 28, pp. 435-489, July 1949.
    [9] P.A. Ivanov, M.E. Levinshtein, A. Agarwal, S. Krishnaswami, and J. Palmour, “Analysis of the effect of temperature on base current gain in power 4H-SiC BJTs,” Materials Science Forum, Vols. 527-529 2006 pp. 1441-1444
    [10] M. Domeij, E. Danielsson, W. Liu, U. Zimmermann, C-M. Zetterling, and M. Ostling, “Measurements and simulations of self-heating and switching with 4H-SIC power BJTs,” in IEEE ISPSD’2003, 2003, pp.375-378.
    [11] B. J. Baliga, Power Semiconductor Devices. Boston, MA:PWS,1996.
    [12] A. Elasser, M. Ghezzo, N. Krishnamurthy, J. Kretchmer, A. W. Clock, D. M. Brown, and T. P. Chow, “Switching characteristics of silicon carbide power PIN diodes,” Solid-State Electron, vol. 44, no. 2, pp. 317-323, Feb. 2000.
    [13] J. Wang, and B.W. Williams, “4H-SiC npn power bipolar junction transistor,” Semiconductor Science and Technology, vol. 14, no. 12, pp. 1088-1097, Dec. 1999.
    [14] M. Roschke, and F. Schwierz, “Electron Mobility Models for 4H, 6H, and 3C SiC,” IEEE Trans. Electron Devices, vol. 48, no. 7, pp. 1442-1447, July 2001.
    [15] X. Li, Y. Luo, L. Fursin, J.H. Zhao, M. Pan, P. Alexandrov, and M. Weiner, “On the temperature coefficient of 4H-SiC BJT current gain,” Solid-State Electronics, vol. 47, no. 2, pp. 233-239, Feb. 2003.
    [16] M. Ikeda, H. Matsunami, and T. Tanaka, “Site effect on the impurity levels in 4H, 6H, and 15R SiC,” Phys. Rev. vol. 22, no. 3, pp. 2842-2854, Sep. 1980.
    [17] D. Morelli, J. Hermans, C. Beetz, W.S. Woo, G.L. Harris, and C. Taylor, Silicon Carbide and Related Materials Eds. Spencer, M.G., et al., Institute of Physics Conference Series N137, pp. 313-316, 1993.
    [18] S. Ryu, A. K. Agarwal, R. Singh, and J.W. Palmour, “1800 V npn bipolar junction transistors in 4H-SiC,” IEEE Electron. Device Lett., vol. 22, no. 3, pp. 124–126, Mar. 2001.
    [19] C. Huang, and J. A. Cooper Jr., “4H-SiC bipolar junction transistors with BVCEO>3,200V,” in Proc. ISPSD, pp. 57-60, 2002.
    [20] Pavel A. Ivanov, Michael E. Levinshtein, Anant K. Agarwal, Sumi Krishnaswami, and John W. Palmour, “Temperature dependence of the current gain in power 4H-SiC NPN BJTs,” IEEE Transactions on Electron Devices, vol. 53, no. 5, pp. 1245-1249, May. 2006.
    [21] “Medici user’s manual, version 2003.6,” Synopsys, Inc., 2003.
    [22] H. K. Gummel, and H. C. Poon, “An integrated charge control model of bipolar transistors,” Bell Syst. Tech. J., vol. 49, pp. 827-852, 1970.
    [23] A.Vladimirescu, Kaihe Zhang, A.R.Newton, D.O.Pederson, and A.Sangiovanni-Vincentelli, “SPICE Version 2G User’s Guide,” Department of Electrical Engineering and Computer Sciences University of California Berkeley, Ca., 94720, Aug. 1981.
    [24] William Liu, “Handbook of III-V Heterojunction Bipolar Transistors, ” John Wiley & Sons, pp. 1088-1090, 1998.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE