簡易檢索 / 詳目顯示

研究生: 傅奕豪
Yi-How Fu
論文名稱: 應用於正交頻域多工無線區域網路之基頻接收器演算法
Baseband Receiver Algorithms for OFDM-Based Wireless Local Area Networks
指導教授: 趙啟超
Chi-Chao Chao
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 通訊工程研究所
Communications Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 英文
論文頁數: 52
中文關鍵詞: 無線區域網路正交頻率多工同步最大可能性估計
外文關鍵詞: WLAN, OFDM, synchronization, ML estimatation
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    由於其簡易的安裝和移動性,無線區域網路 (wireless local area network,簡稱WLAN)相對於傳統的有線的區域網路已經變成另一種可行的方式。而IEEE 802.11a是一種高速率的無線區域網路的標準,其運用現在很熱門的正交頻域多工 (orthogonal frequency division multiplexing,簡稱OFDM)的技術。在這篇論文裡我們根據IEEE 802.11a的標準,結合頻率、時間、和框架的同步,加上通道的估計和訊號的偵測與解碼。我們考慮有可加性白色高斯雜訊 (additive white Gaussian noise,簡稱AWGN) 的多路徑通道 (multipath channel),而這個通道在一個封包 (packet) 之內是不變的,但對於不同的封包通道就不同。正交頻域多工系統的一個很重要的問題便是同步,包括了頻率同步 (frequency synchronization) ,時間同步 (timing synchronization) 與傳輸框同步 (frame synchronization) 的研究。我們將採用IEEE 802.11a 標準的實體層 (physical layer) 來從事頻率,時間,和傳輸框同步的最大可能性估計 (maximum likelihood estimation) 研究。我們利用IEEE 802.11a的10個短訓練符號 (training symbol) 和2個長訓練符號,導出上述的同步的演算法。再結合先前推導過的通道估計和訊號偵測與解碼,我們建立出了一個基頻的接收器。模擬結果顯示我們的基頻接收器與之前的演算法比較,有著類似的表現,但是需要較少的複雜度。且相較於完美同步的例子,非完美同步的例子下,其錯誤率會飽和至一穩定值。而且對於不同的傳輸速率而言,其表現不只會受到傳輸速率影響,同時也會受到錯誤更正碼碼率的影響。


    Wireless local area network (WLAN) are now becoming a viable
    alternative to traditional wired solutions, due to the advantage
    of ease of installation and mobility. IEEE 802.11a is a high-rate
    WLAN standard, based on the popular orthogonal frequency division
    multiplexing (OFDM) technology. In this thesis we manage to
    combine frequency, timing, and frame synchronization plus channel
    estimation and detection based on the 802.11a standard. The
    channel considered is a multipath channel with additive white
    Gaussian noise (AWGN) and is assumed to be quasi-static. Based on
    the maximum likelihood (ML) criterion, we have derived estimator
    algorithms to conduct the above mentioned synchronization tasks.
    Jointly with previous proposed channel estimation and combined
    detection/decoding algorithms, an entire baseband receiver has
    been obtained. Simulation results show that our baseband receiver
    performs similarly as those previously proposed best methods, but
    requires lower complexity.

    目錄 Absttract ------------------------------------------ i Content -------------------------------------------- ii 1. Introduction ------------------------------------ 1 2. Overview of OFDM and IEEE 802.11a Standard ------ 2 2.1 Introduction to OFDM ------------------------- 2 2.2 Generation of OFDM Symbols ------------------- 3 2.3 Overview of IEEE 802.11a Standard ------------ 4 2.4 PLCP Preamble -------------------------------- 5 2.5 FEC Encoder ---------------------------------- 7 2.6 Interleaving --------------------------------- 8 3. Review of Some Synchronization Techniques, Channel Estimation, and Decoding Algorithm ----------------- 10 3.1 Effect of Frequency Offset in OFDM System ---- 10 3.2 Effect of Timig Offset in OFDM System -------- 12 3.3 Review of Some Synchronization Methods ------- 13 3.3.1 Morelli and Mengali Method --------------- 13 3.3.2 Keller and Hanzo Method ------------------ 14 3.3.3 Chevillat, Maiwald, and Ungerboeck Method 15 3.3.4 Wei -------------------------------------- 15 3.3.5 Kuo -------------------------------------- 17 3.4 Other Criteria ------------------------------- 18 3.5 Channel Estimation --------------------------- 19 3.6 Detection and Decoding Algorithm ------------- 20 4. Frequency, Timing, and Frame Synchronization for IEEE 802.11a -------------------------------------------- 22 4.1 Frequency Synchronization -------------------- 22 4.1.1 Coarse Synchronization ------------------- 22 4.1.2 Fine Synchronization --------------------- 25 4.2 Timing and Frame Synchronization ------------- 30 4.2.1 Timing Synchronization ------------------- 31 4.2.2 Frame Synchronization -------------------- 32 4.3 Combined Frequency, Timing, and Frame Synchronization ------------------------------------------------ 33 5. Simulation -------------------------------------- 35 5.1 Generation of AWGN Noise --------------------- 35 5.2 Generation of Multipath Channel -------------- 37 5.3 Simulation Results --------------------------- 38 5.3.1 Frequency Synchronization ---------------- 38 5.3.2 Timing and Frame Synchronization --------- 40 5.3.3 Baseband Receiver Simulation ------------- 43 6. Concluding Remarks ------------------------------ 49 Bibliography --------------------------------------- 50

    [1]IEEE 802.11, ``Supplement to IEEE standard for information
    technology -- Telecommunications and information exchange between
    systems -- Local and metropolitan area networks -- Specific
    requirements -- Part 11: Wireless LAN medium access control (MAC)
    and physical layer (PHY) specifications: High-speed physical layer
    in the 5 GHz band,'' Sept. 1999.

    [2]W.-C. Liu, ``Combined detection and decoding for OFDM-based
    wireless local area networks,'' Master Thesis, National Tsing Hua
    University, Hsinchu, Taiwan, R.O.C., June 2001.

    [3]R. van Nee and R. Prasad, OFDM for Wireless Multimedia
    Communications. Boston: Artech House, 2000.

    [4]M. Morelly and U. Mengali, ``Carrier-frequency estimation for
    transmissions over selective channels," IEEE Trans.
    Commun., vol. 48, pp. 1580--1589, Sept. 2000.

    [5]T. Keller and L. Hanzo, ``Orthogonal frequency division
    multiplex synchronization techniques for wireless local area
    networks,'' in Proc. IEEE Int. Symp. Personal, Indoor, and
    Mobile Radio Radio Communications, Taipei, Taiwan, Oct. 1996,
    pp.\ 963--967.

    [6]P.R. Chevillat, D. Maiwald, and G. Ungerboeck ``Rapid training
    of a voiceband data-modem receiver employing an equalizer with
    fractional-T spaced coefficients,'' IEEE Trans. Commun,
    vol. 35, pp.\ 869--876, 1987.

    [7]Y.-C. Wei, ``Joint frequency and timing synchronization for
    OFDM-based wireless local area networks,'' Master Thesis, National
    Tsing Hua University, Hsinchu, Taiwan, R.O.C., June 2003.

    [8]C.-C. Kuo, ``Algorithm and architecture of frame synchronization
    for OFDM-based wireless local area networks,'' Master Thesis,
    National Tsing Hua University, Hsinchu, Taiwan, R.O.C., June 2003.

    [9]J. J. van de Beek, M. Sandell, and P. O. Borjesson, ``ML
    estimation of timing and frequency offset in OFDM systems,"
    IEEE Trans. Signal Processing., vol. 43, pp. 761--766, Aug.
    1997.

    [10]T. M. Schmidl and D. C. Cox, ``Robust frequency and timing
    synchronization for OFDM,'' IEEE Trans. Commun., vol. 45,
    pp. 1613--1621, Dec. 1997.

    [11]C.-Y. Wu, ``Timing synchronization for OFDM-based wireless local
    area networks,'' Master Thesis, National Tsing Hua University,
    Hsinchu, Taiwan, R.O.C., June. 2002.

    [12]H.-C. Wang, ``Synchronization techniques for the IEEE 802.11a
    wireless local area network,'' Master Thesis, National Tsing Hua
    University, Hsinchu, Taiwan, R.O.C., June. 2002.

    [13]J. H. Gunther, L. Hui, and A. L. Swindlehurst, ``A new
    approach for symbol frame synchronization and carrier frequency
    estimation in OFDM communications,'' IEEE Trans. Signal
    Processing}, vol. 5, pp. 2725--2728, 1999

    [14]A. J. de Lind van Wijngaarden and T.J. Willink, ``Frame
    synchronization using distributed sequences,'' IEEE Trans.
    Commun., vol. 48, pp. 2127--2138, Dec. 2000.

    [15]D.-K. Kim, S.-H. Do, H.-K. Lee, and H.-J. Choi, ``Performance
    evaluation of the frequency detectors for orthonal frequency
    division multiplexing,'' IEEE Trans. Consumer Electronic.,
    vol. 43, pp. 776--782, Aug. 1997.

    [16]B. Y. Prasetyo, F. Said, and A. H. Aghvami, ``On the
    guard-band based coarse frequency offset estimation technique for
    burst OFDM systems,'' in Proc. IEEE Vehicular Technology
    Conf., Tokyo, Japan, May 2000, pp. 220--224.

    [17]M. M. K. Howlader and B. D. Woerner, ``Decoder-assisted
    frame synchronization for packet transmission,'' IEEE J.
    Select. Area Commun.}, vol. 19, pp. 2331--2345, Dec. 2001.

    [18]M. Speth, F. Classen, and H. Meyr, ``Frame synchronization of
    OFDM systems in frequency selective fading channels,'' in
    Proc. IEEE Vehicular Technology Conf., Phoenix, AZ, USA, May.
    1997, pp. 4--7.

    [19]M. Morelli, A. N. D'Andrea, and U. Mengali, ``Frequency
    ambiguity resolution in OFDM,'' IEEE Commun Lett., vol. 4,
    pp. 134--136, Apr. 2000.

    [20]B. O'Hara and A. Petrick, The IEEE 802.11 Handbook: A
    Designer's Companion.} New York: IEEE Press, 1999.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE