簡易檢索 / 詳目顯示

研究生: 呂銘洲
論文名稱: 利用胜肽為基底的新型金屬離子化學偵測器
New Peptidyl Water-Soluble Chemosensors Based on a β-Hairpin Structure
指導教授: 洪嘉呈
口試委員: 江昀緯
吳淑褓
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 92
中文關鍵詞: 化學偵測器胜肽金屬離子hairpin
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 環境中包括人體內充斥著各式各樣的金屬離子,因此研發新型的金屬離子化學偵測器是目前許多化學家努力研究的領域之一。目前許多化學偵測器是利用有機小分子修飾,而我們藉由Fmoc保護基的固態胜肽合成法,合成出四種以胜肽小分子為基底的β-hairpin衍生物,希望以純天然的小分子量胜肽也能夠開發出新型的化學偵測器。其中Cu2+和Hg2+,會造成此四條胜肽HP7-H2H11、HP7-H4H9、HP7-H2H4H9H11及HP7-H1H12強烈的螢光淬息效應,而其它測試的 (Al3+、Ba2+、Cd2+、Co2+、Cr3+、Fe2+、Fe3+、Mg2+、Mn2+、Ni2+、Sr2+、Zn2+) 等金屬離子,並沒有此種明顯的螢光淬息效應。在較高的pH值環境條件下,相較於Hg2+而言,Cu2+展現出更為明顯和強烈的螢光淬息效應。此外,當加入Cu2+和Hg2+時,圓二色光譜儀 (CD) 會展現不同的結構變化,藉此亦可以用於分辨出此兩種金屬離子。在pH 7.5時,Cu2+鍵結在HP7-H2H11、HP7-H4H9、HP7-H2H4H9H11、HP7-H1H12的解離常數,分別是6.7 μM、20.3 μM、6.0 μM、8.1 μM。而Hg2+的結合常數分別是50.3 μM、34.4 μM、29.0 μM、35.9 μM。對HP7-H2H11而言,對Cu2+的偵測極限是0.55 μM,而對Hg2+的偵測極限是0.54 μM。至於對HP7-H4H9而言,對Cu2+的偵測極限是0.79 μM,而對Hg2+的偵測極限是0.97 μM。對HP7-H2H4H9H11來看,對Cu2+的偵測極限是0.68 μM,而對Hg2+的偵測極限是1.34 μM。最後,是將His置於N端和C端的HP7-H1H12,對Cu2+的偵測極限是0.62 μM,而對Hg2+的偵測極限是1.04 μM。根據本篇研究,置換了四個組胺酸 (Histidine) 的HP7-H2H4H9H11對Cu2+淬息效果較為明顯,但結構也較不穩定。置換在靠近N端和C端的HP7-H2H11,雖然對Cu2+淬息效果不如HP7-H2H4H9H11,但是結構改變較小。置換在靠近β-turn的HP7-H4H9,因結構也改變較多,解離常數也較大。最後是置換N端和C端上的HP7-H1H12,對Cu2+、Hg2+淬息效果和其它HP7胜肽不同,Hg2+影響大於Cu2+推測應該是其置換的位置較具有彈性 (flexible)。


    Four new peptide-based chemosensors derived from a β-hairpin have been synthesized via solid phase peptide synthesis (SPPS) and Fmoc chemistry. The Trp fluorescence of HP7-H2H11 (Lys-His-Trp-Asn-Pro-Ala-Thr-Gly-Lys-Trp- His-Glu), HP7-H4H9 (Lys-Thr-Trp-His-Pro-Ala-Thr-Gly-His-Trp-Thr-Glu), HP7- H2H4H9H11 (Lys-His-Trp-His-Pro-Ala-Thr-Gly-His-Trp-His-Glu) and HP7-H1H12 (His-Thr-Trp-Asn-Pro-Ala-Thr-Gly-Lys-Trp-Thr-His) peptides was significantly quenched in the presence of Cu2+and Hg2+, while adding Al3+, Ba2+, Cd2+, Co2+, Cr3+, Fe2+, Fe3+, Mg2+, Mn2+, Ni2+, Sr2+ and Zn2+dose not cause significant fluorescence changes. Also, pH dependent measurements indicate that Cu2+ has a more profound quenching effect than Hg2+ on the fluorescence at high pH, which could be used to discriminate Cu2+ and Hg2+. Besides, circular dichroism (CD) spectra show that Cu2+ and Hg2+ induce different structural changes on the peptides. At pH 7.5, the dissociation constants (Kd) of Cu2+ binding to HP7-H2H11, HP7-H4H9, HP7-H2H4H9H11 and HP7-H1H12 are 6.7 μM, 20.3 μM, 6.0μM and, 8.1μM respectively. For Hg2+ binding, the Kd is 50.3 μM to HP7-H2H11, 34.4 μM to HP7-H4H9, 29.0 μM to HP7-H2H4H9H11 and 35.9 μM to HP7-H1H12. The detection limit of HP7-H2H11 is 0.55 μM for Cu2+ and 0.54 μM for Hg2+, and that of HP7-H4H9 is 0.79 μM for Cu2+ and 0.97 μM for Hg2+. For HP7-H2H4H9H11, the detection limit of HP7-H2H4H9H11 is 0.68 μM for Cu2+ and 1.34 μM for Hg2+ , and that of HP7-H1H12 is 0.62 μM for Cu2+ and 1.04 μM for Hg2+ . Our results demonstrate that these four new water-soluble peptides can be good chemosensors for the detection of Cu2+ and Hg2+.

    中文摘要 i Abstract ii 目錄 iii 圖目錄 v 表目錄 vi 第一章 1 1-1化學偵測器 1 1-2 螢光轉移機制 2 1-2-1能量轉移 (energy transfer) 2 1-2-2螢光能量共振轉移 (fluorescence resonance energy transfer,FRET) ……………………………………………………………………………………………………………………………...…………………………….3 1-2-3電子轉移 (electron transfer) 3 1-2-4 光誘導電子轉移 (Photoinduced electron transfer,PET) 4 1-2-5單體-雙體 (monomer-excimer) 5 1-2-6光誘導電荷轉移 (photoinduced charge transfer) 6 1-3生物系統中的金屬和胺基酸 7 1-3-1生物系統中的金屬元素 (metals in biological system) 7 1-3-2生物系統中的配位基 (biological ligand) 10 1-3-3胺基酸性質-胺基酸的側鏈的pKa值 12 1-3-4軟硬酸鹼理論 (Hard-soft acid-base theory,HSAB) 12 1-4 胜肽簡介 14 1-4-1 β-hairpin介紹 16 1-4-2 HP7介紹 18 1-5研究動機 20 第二章 22 2-1實驗儀器 22 2-2實驗藥品 24 2-3 固相胜肽合成法介紹: 26 2-3-1 酯化反應 (Esterfication) 29 2-3-2 去保護 (Deprotection) 30 2-3-3 活化 (Activation) 31 2-3-4 耦合 (Coupling) 32 2-3-5 切除 (Cleavage) 33 2-4 螢光光譜儀 (Fluorescence Spectrometer) 33 2-5 圓二色光譜儀 36 2-6胜肽的合成、純化與鑑定 41 2-6-1 HP7系列的胜肽合成 41 2-6-2 HP7系列的胜肽純化 43 2-6-3 HP7系列的胜肽鑑定 43 2-7光譜測量 44 2-7-1 UV光譜測量濃度 44 2-7-2 螢光光譜測量 44 (1) 選擇性 44 (2) 當量 45 (3) Job plot 45 (4) 競爭實驗 45 (5) 結合常數 45 (6) 偵測極限 46 (7) 不同pH值 47 (8) 可逆性 47 (9) PDCA測試 47 2-7-3 CD光譜測量 47 (1) Far-UV CD光譜 (Wavelength scans) 47 (2) 變溫實驗 (thermal denaturation) 47 2-7-4 2D NMR光譜測量 47 第三章實驗結果與討論 48 3-1螢光系列實驗 48 3-1-1螢光放射光譜實驗 48 3-2-2圓二色光譜實驗 68 3-3 HP7系列胜肽2D-NMR之比較 74 3-3-1 HP7系列胜肽與random coil的比較 74 3-3-2 HP7系列胜肽與Wild type的比較 75 3-4 EPR實驗 78 3-4-1CW-EPR 78 3-4-2 ESEEM實驗 78 第四章 結論 79 參考文獻 80

    (1) Neupane, L. N.; Thirupathi, P.; Jang, S.; Jang, M. J.; Kim, J. H.; Lee, K.-H.: Highly selectively monitoring heavy and transition metal ions by a fluorescent sensor based on dipeptide. Talanta 2011, 85, 1566-1574.
    (2) Wu, S.-P.; Liu, S.-R.: A new water-soluble fluorescent Cu(II) chemosensor based on tetrapeptide histidyl-glycyl-glycyl-glycine (HGGG). Sensors and Actuators B: Chemical 2009, 141, 187-191.
    (3) Torrado, A.; Walkup, G. K.; Imperiali, B.: Exploiting Polypeptide Motifs for the Design of Selective Cu(II) Ion Chemosensors. J. Am. Chem. Soc. 1998, 120, 609-610.
    (4) White, B. R.; Holcombe, J. A.: Fluorescent peptide sensor for the selective detection of Cu2+. Talanta 2007, 71, 2015-2020.
    (5) Farrer, B. T.; Harris, N. P.; Balchus, K. E.; Pecoraro, V. L.: Thermodynamic Model for the Stabilization of Trigonal Thiolato Mercury(II) in Designed Three-Stranded Coiled Coils. Biochemistry 2001, 40, 14696-14705.
    (6) Si, S.; Kotal, A.; Mandal, T. K.: One-Dimensional Assembly of Peptide-Functionalized Gold Nanoparticles:  An Approach Toward Mercury Ion Sensing. J. Phys. Chem. C. 2006, 111, 1248-1255.
    (7) Li, H.-W.; Li, Y.; Dang, Y.-Q.; Ma, L.-J.; Wu, Y.; Hou, G.; Wu, L.: An easily prepared hypersensitive water-soluble fluorescent probe for mercury(ii) ions. Chem. Commun. 2009, 4453-4455.
    (8) Xie, J.; Zheng, Y.; Ying, J. Y.: Protein-Directed Synthesis of Highly Fluorescent Gold Nanoclusters. J. Am. Chem. Soc. 2009, 131, 888-889.
    (9) Ma, L.; Li, H.; Wu, Y.: A pyrene-containing fluorescent sensor with high selectivity for lead(II) ion in water with dual illustration of ground-state dimer. Sensors and Actuators B: Chemical 2009, 143, 25-29.
    (10) Ma, L.-J.; Liu, Y.-F.; Wu, Y.: A tryptophan-containing fluoroionophore sensor with high sensitivity to and selectivity for lead ion in water. Chem. Commun. 2006, 2702-2704.
    (11) Deo, S.; Godwin, H. A.: A Selective, Ratiometric Fluorescent Sensor for Pb2+. J. Am. Chem. Soc. 1999, 122, 174-175.
    (12) Kavallieratos, K.; Rosenberg, J. M.; Chen, W.-Z.; Ren, T.: Fluorescent Sensing and Selective Pb(II) Extraction by a Dansylamide Ion-Exchanger. J. Am. Chem. Soc. 2005, 127, 6514-6515.
    (13) Pearce, D. A.; Jotterand, N.; Carrico, I. S.; Imperiali, B.: Derivatives of 8-Hydroxy-2-methylquinoline Are Powerful Prototypes for Zinc Sensors in Biological Systems. J. Am. Chem. Soc. 2001, 123, 5160-5161.
    (14) Shults, M. D.; Pearce, D. A.; Imperiali, B.: Modular and Tunable Chemosensor Scaffold for Divalent Zinc. J. Am. Chem. Soc. 2003, 125, 10591-10597.
    (15) Kimura, E.; Koike, T.: Recent development of zinc-fluorophores. Chem. Soc. Rev. 1998, 27, 179-184.
    (16) Balzani, V.; Ceroni, P.; Gestermann, S.; Kauffmann, C.; Gorka, M.; Vogtle, F. Dendrimers as fluorescent sensors with signal amplification. Chem. Commun. 2000, 853-854.
    (17) Vögtle, F.; Gestermann, S.; Kauffmann, C.; Ceroni, P.; Vicinelli, V.; Balzani, V. Coordination of Co2+ Ions in the Interior of Poly(propylene amine) Dendrimers Containing Fluorescent Dansyl Units in the Periphery. J. Am. Chem. Soc. 2000, 122, 10398-10404.
    (18) Lohani, C. R.; Kim, J.-M.; Lee, K.-H. Facile synthesis of anthracene-appended amino acids as highly selective and sensitive fluorescent Fe3+ ion sensors. Bioorg. Medicinal Chem. Lett. 2009, 19, 6069-6073.
    (19) Bissell, R. A.; de Silva, A. P.; Gunaratne, H. Q. N.; Lynch, P. L. M.; Maguire, G. E. M.; Sandanayake, K. R. A. S.: Molecular fluorescent signalling with 'fluor-spacer-receptor' systems: approaches to sensing and switching devices via supramolecular photophysics. Chem. Soc. Rev. 1992, 21, 187-195.
    (20) Zheng, Y.; Gattas-Asfura, K. M.; Konka, V.; Leblanc, R. M.: A dansylated peptide for the selective detection of copper ions. Chem. Commun. 2002, 2350-2351.
    (21) Zheng, Y.; Cao, X.; Orbulescu, J.; Konka, V.; Andreopoulos, F. M.; Pham, S. M.; Leblanc, R. M.: Peptidyl Fluorescent Chemosensors for the Detection of Divalent Copper. Anal. Chem. 2003, 75, 1706-1712.
    (22) Yang, M.-H.; Lohani, C. R.; Cho, H.; Lee, K.-H.: A methionine-based turn-on chemical sensor for selectively monitoring Hg2+ ions in 100% aqueous solution. Org. Biomol. Chem. 2011, 9, 2350-2356.
    (23) Ji, H.-F.; Dabestani, R.; Brownxy, G. M.; Hettich, R. L.: Spacer Length Effect on the Photoinduced Electron Transfer Fluorescent Probe for Alkali Metal Ions. Photochem. Photobiol. 1999, 69, 513-516.
    (24) Wu, S.-P.; Wang, T.-H.; Liu, S.-R.: A highly selective turn-on fluorescent chemosensor for copper(II) ion. Tetrahedron 2010, 66, 9655-9658.
    (25) He, G.; Zhao, Y.; He, C.; Liu, Y.; Duan, C.: “Turn-On” Fluorescent Sensor for Hg2+ via Displacement Approach. Inorg. Chem. 2008, 47, 5169-5176.
    (26) Ding, Y.; Xie, Y.; Li, X.; Hill, J. P.; Zhang, W.; Zhu, W.: Selective and sensitive "turn-on" fluorescent Zn2+ sensors based on di- and tripyrrins with readily modulated emission wavelengths. Chem. Commun. 2011, 47, 5431-5433.
    (27) Liu, S.-R.; Wu, S.-P.: An NBD-based Sensitive and Selective Fluorescent Sensor for Copper(II) Ion. J. Fluoresc. 2011, 21, 1599-1605.
    (28) Woodroofe, C. C.; Lippard, S. J.: A Novel Two-Fluorophore Approach to Ratiometric Sensing of Zn2+. J. Am. Chem. Soc. 2003, 125, 11458-11459.
    (29) Xue, L.; Liu, Q.; Jiang, H.: Ratiometric Zn2+ Fluorescent Sensor and New Approach for Sensing Cd2+ by Ratiometric Displacement. Org. Lett. 2009, 11, 3454-3457.
    (30) Kiyose, K.; Kojima, H.; Urano, Y.; Nagano, T.: Development of a Ratiometric Fluorescent Zinc Ion Probe in Near-Infrared Region, Based on Tricarbocyanine Chromophore. J. Am. Chem. Soc. 2006, 128, 6548-6549.
    (31) Zhang, J. F.; Zhou, Y.; Yoon, J.; Kim, Y.; Kim, S. J.; Kim, J. S.: Naphthalimide Modified Rhodamine Derivative: Ratiometric and Selective Fluorescent Sensor for Cu2+ Based on Two Different Approaches. Org. Lett. 2010, 12, 3852-3855.
    (32) Wang, H.-H.; Xue, L.; Qian, Y.-Y.; Jiang, H.: Novel Ratiometric Fluorescent Sensor for Silver Ions. Org. Lett. 2009, 12, 292-295.
    (33) Royzen, M.; Dai, Z.; Canary, J. W.: Ratiometric Displacement Approach to Cu(II) Sensing by Fluorescence. J. Am. Chem. Soc. 2005, 127, 1612-1613.
    (34) Bergonzi, R.; Fabbrizzi, L.; Licchelli, M.; Mangano, C.: Molecular switches of fluorescence operating through metal centred redox couples. Coord. Chem. Rev. 1998, 170, 31-46.
    (35) Farver, O.; Pecht, I.: Electron transfer in blue copper proteins. Coord. Chem. Rev. 2011, 255, 757-773.
    (36) Kavarnos, G. J.; Turro, N. J.: Photosensitization by reversible electron transfer: theories, experimental evidence, and examples. Chem. Rev. 1986, 86, 401-449.
    (37) Pazos, E.; Vazquez, O.; Mascarenas, J. L.; Eugenio Vazquez, M.: Peptide-based fluorescent biosensors. Chem. Soc. Rev. 2009, 38, 3348-3359.
    (38) Jiang, P.; Guo, Z.: Fluorescent detection of zinc in biological systems: recent development on the design of chemosensors and biosensors. Coord. Chem. Rev. 2004, 248, 205-229.
    (39) Torrado, A.; Imperiali, B.: New Synthetic Amino Acids for the Design and Synthesis of Peptide-Based Metal Ion Sensors. J.Org.Chem.1996,61, 8940-8948.
    (40) Valeur, B.: Principles of Fluorescent Probe Design for Ion RecognitionTopics in Fluorescence Spectroscopy. Lakowicz, J., Ed.; Springer US, 2002; Vol. 4; pp 21-48.
    (41) Leray, I.; Lefevre, J.-P.; Delouis, J.-F.; Delaire, J.; Valeur, B.: Synthesis and Photophysical and Cation-Binding Properties of Mono- and Tetranaphthylcalix[4]arenes as Highly Sensitive and Selective Fluorescent Sensors for Sodium. Chemistry – A European Journal 2001, 7, 4590-4598.
    (42) Kim, S. K.; Lee, S. H.; Lee, J. Y.; Lee, J. Y.; Bartsch, R. A.; Kim, J. S.: An Excimer-Based, Binuclear, On−Off Switchable Calix[4]crown Chemosensor. J. Am. Chem. Soc. 2004, 126, 16499-16506.
    (43) Xu, Z.; Xiao, Y.; Qian, X.; Cui, J.; Cui, D.: Ratiometric and Selective Fluorescent Sensor for CuII Based on Internal Charge Transfer (ICT). Org. Lett. 2005, 7, 889-892.
    (44) Crisponi, G.; Nurchi, V. M.; Fanni, D.; Gerosa, C.; Nemolato, S.; Faa, G.: Copper-related diseases: From chemistry to molecular pathology. Coord. Chem. Rev. 2010, 254, 876-889.
    (45) Crichton, R. R.: Biological inorganic chemistry : an introduction. In Biological inorganic chemistry : an introduction.; 1st ed.; Boston, E. A., Ed., 2008; pp 369.
    (46) Roat-Malone, R. M.: Bioinorganic chemistry: a short course. In Bioinorganic chemistry: a short course; Wiley : Hoboken , N. J., 2002; pp 348.
    (47) Pace, C. N.; Grimsley, G. R.; Scholtz, J. M.: Protein Ionizable Groups: pK Values and Their Contribution to Protein Stability and Solubility. J. Biol. Chem. 2009, 284, 13285-13289.
    (48) Durani, S.: Protein design with L- and D-alpha-amino acid structures as the alphabet. Acc. Chem. Res. 2008, 41, 1301-8.
    (49) Venkatraman, J.; Shankaramma, S. C.; Balaram, P.: Design of Folded Peptides†. Chem. Rev. 2001, 101, 3131-3152.
    (50) Lippard, S. J. B., J. M.: Atom- and Group-Transfer Chemistry. In Principles of Bioinorganic Chemistry, 1994; pp 286.
    (51) Sibanda, B. L.; Thornton, J. M.: [beta]-Hairpin families in globular proteins. Nature 1985, 316, 170-174.
    (52) Hughes, R. M.; Waters, M. L.: Model systems for β-hairpins and β-sheets. Curr. Opin. Struct.Biol.2006, 16, 514-524.
    (53) Haque, T. S.; Gellman, S. H.: Insights on β-Hairpin Stability in Aqueous Solution from Peptides with Enforced Type I‘ and Type II‘ β-Turns. J. Am. Chem. Soc. 1997, 119, 2303-2304.
    (54) Sibanda, B. L.; Thornton, J. M.: Accommodating Sequence Changes in β-Hairpins in Proteins. J. Mol. Biol. 1993, 229, 428-447.
    (55) de Alba, E.; Jiménez, M. A.; Rico, M.: Turn Residue Sequence Determines β-Hairpin Conformation in Designed Peptides. J. Am. Chem. Soc. 1997, 119, 175-183.
    (56) Ramirez-Alvarado, M.; Blanco, F. J.; Serrano, L.: De novo design and structural analysis of a model [beta]-hairpin peptide system. Nat. Struct. Mol. Biol. 1996, 3, 604-612.
    (57) Constantine, K. L.; Mueller, L.; Andersen, N. H.; Tong, H.; Wandler, C. F.; Friedrichs, M. S.; Bruccoleri, R. E.: Structural and Dynamic Properties of a .beta.-Hairpin-Forming Linear Peptide. 1. Modeling Using Ensemble-Averaged Constraints. J. Am. Chem. Soc. 1995, 117, 10841-10854.
    (58) Maynard, A. J.; Sharman, G. J.; Searle, M. S.: Origin of β-Hairpin Stability in Solution:  Structural and Thermodynamic Analysis of the Folding of a Model Peptide Supports Hydrophobic Stabilization in Water. J. Am. Chem. Soc. 1998, 120, 1996-2007.
    (59) Searle, M. S.; Williams, D. H.; Packman, L. C.: A short linear peptide derived from the N-terminal sequence of ubiquitin folds into a water-stable non-native [beta]-hairpin. Nat. Struct. Mol. Biol. 1995, 2, 999-1006.
    (60) Lewandowska, A.; Ołdziej, S.; Liwo, A.; Scheraga, H. A.: β-hairpin-forming peptides; models of early stages of protein folding. Biophys. Chem. 2010, 151, 1-9.
    (61) Munoz, V.; Thompson, P. A.; Hofrichter, J.; Eaton, W. A.: Folding dynamics and mechanism of [beta]-hairpin formation. Nature 1997, 390, 196-199.
    (62) Muñoz, V.; Ghirlando, R.; Blanco, F. J.; Jas, G. S.; Hofrichter, J.; Eaton, W. A.: Folding and Aggregation Kinetics of a β-Hairpin. Biochemistry 2006, 45, 7023-7035.
    (63) Muñoz, V.; Henry, E. R.; Hofrichter, J.; Eaton, W. A.: A statistical mechanical model for β-hairpin kinetics. Proc.Natl. Acad. Sci.1998, 95, 5872-5879.
    (64) Matheson, R. R.; Scheraga, H. A.: A Method for Predicting Nucleation Sites for Protein Folding Based on Hydrophobic Contacts. Macromolecules 1978, 11, 819-829.
    (65) Dinner, A. R.; Lazaridis, T.; Karplus, M.: Understanding β-hairpin formation. Proc.Natl. Acad. Sci. 1999, 96, 9068-9073.
    (66) Fernández, A.; Scheraga, H. A.: Insufficiently dehydrated hydrogen bonds as determinants of protein interactions. Proceedings of the National Academy of Sciences 2003, 100, 113-118.
    (67) Lewandowska, A.; Ołdziej, S.; Liwo, A.; Scheraga, H. A.: Mechanism of formation of the C-terminal β-hairpin of the B3 domain of the immunoglobulin binding protein G from Streptococcus. III. Dynamics of long-range hydrophobic interactions. Proteins: Struct. Func. Bioinf.2010, 78, 723-737.
    (68) Robinson, J. A.: β-Hairpin Peptidomimetics: Design, Structures and Biological Activities. Acc. Chem. Res. 2008, 41, 1278-1288.
    (69) Stanger, H. E.; Gellman, S. H.: Rules for Antiparallel β-Sheet Design:  d-Pro-Gly Is Superior to l-Asn-Gly for β-Hairpin Nucleation1. J. Am. Chem. Soc. 1998, 120, 4236-4237.
    (70) Patel, K.; Goyal, B.; Kumar, A.; Kishore, N.; Durani, S.: Cured of “Stickiness”, Poly-l β-Hairpin is Promoted with ll-to-dd Mutation as a Protein and a Hydrolase Mimic. J. Phys.Chem. B. 2010, 114, 16887-16893.
    (71) Olsen, K. A.; Fesinmeyer, R. M.; Stewart, J. M.; Andersen, N. H.: Hairpin folding rates reflect mutations within and remote from the turn region. Proc.Natl. Acad. Sci.U.S.A.2005, 102, 15483-15487.
    (72) Schrader, T. E.; Schreier, W. J.; Cordes, T.; Koller, F. O.; Babitzki, G.; Denschlag, R.; Renner, C.; Löweneck, M.; Dong, S.-L.; Moroder, L.; Tavan, P.; Zinth, W.: Light-triggered β-hairpin folding and unfolding. Proc.Natl. Acad. Sci.2007, 104, 15729-15734.
    (73) Huggins, K. N. L.; Bisaglia, M.; Bubacco, L.; Tatarek-Nossol, M.; Kapurniotu, A.; Andersen, N. H.: Designed Hairpin Peptides Interfere with Amyloidogenesis Pathways: Fibril Formation and Cytotoxicity Inhibition, Interception of the Preamyloid State. Biochemistry 2011, 50, 8202-8212.
    (74) Cheng, R. P.; Fisher, S. L.; Imperiali, B.: Metallopeptide Design:  Tuning the Metal Cation Affinities with Unnatural Amino Acids and Peptide Secondary Structure. J. Am. Chem. Soc. 1996, 118, 11349-11356.
    (75) Kobayashi, N.; Honda, S.; Yoshii, H.; Uedaira, H.; Munekata, E.: Complement assembly of two fragments of the streptococcal protein G B1 domain in aqueous solution. FEBS Lett. 1995, 366, 99-103.
    (76) Skwierawska, A.; Ołdziej, S.; Liwo, A.; Scheraga, H. A.: Conformational studies of the C-terminal 16-amino-acid-residue fragment of the B3 domain of the immunoglobulin binding protein G from Streptococcus. Biopolymers 2009, 91, 37-51.
    (77) Skwierawska, A.; Żmudzińska, W.; Ołdziej, S.; Liwo, A.; Scheraga, H. A.: Mechanism of formation of the C-terminal β-hairpin of the B3 domain of the immunoglobulin binding protein G from Streptococcus. II. Interplay of local backbone conformational dynamics and long-range hydrophobic interactions in hairpin formation. Proteins: Struct. Func. Bioinf.2009, 76, 637-654.
    (78) Alexander, P.; Fahnestock, S.; Lee, T.; Orban, J.; Bryan, P.: Thermodynamic analysis of the folding of the streptococcal protein G IgG-binding domains B1 and B2: why small proteins tend to have high denaturation temperatures. Biochemistry 1992, 31, 3597-3603.
    (79) Alexander, P.; Orban, J.; Bryan, P.: Kinetic analysis of folding and unfolding the 56 amino acid IgG-binding domain of streptococcal protein G. Biochemistry 1992, 31, 7243-7248.
    (80) Honda, S.; Kobayashi, N.; Munekata, E.: Thermodynamics of a β-hairpin structure: evidence for cooperative formation of folding nucleus. J. Mol. Biol. 2000, 295, 269-278.
    (81) Kobayashi, N., Endo, S., Munekata, E. : Conformational study on the IgG binding domain of ptrotein G. peptide chem. 1993, 278-280.
    (82) Blanco, F. J.; Rivas, G.; Serrano, L.: A short linear peptide that folds into a native stable [beta]-hairpin in aqueous solution. Nat. Struct. Mol .Biol .1994, 1, 584-590.
    (83) Gronenborn, A.; Filpula, D.; Essig, N.; Achari, A.; Whitlow, M.; Wingfield, P.; Clore, G.: A novel, highly stable fold of the immunoglobulin binding domain of streptococcal protein G. Science 1991, 253, 657-661.
    (84) Honda, S.; Kobayashi, N.; Munekata, E.; Uedaira, H.: Fragment Reconstitution of a Small Protein:  Folding Energetics of the Reconstituted Immunoglobulin Binding Domain B1 of Streptococcal Protein G. Biochemistry 1999, 38, 1203-1213.
    (85) Kobayashi, N.; Honda, S.; Munekata, E.: Fragment Reconstitution of a Small Protein:  Disulfide Mutant of a Short C-Terminal Fragment Derived from Streptococcal Protein G†. Biochemistry 1999, 38, 3228-3234.
    (86) Kobayashi, N.; Honda, S.; Yoshii, H.; Munekata, E.: Role of Side-chains in the Cooperative β-Hairpin Folding of the Short C−Terminal Fragment Derived from Streptococcal Protein G. Biochemistry 2000, 39, 6564-6571.
    (87) Sibanda, B. L.; Thornton, J. M.: [5] Conformation of β hairpins in protein structures: Classification and diversity in homologous structures. In Methods Enzymol.; John, J. L., Ed.; Academic Press, 1991; Vol. Volume 202; pp 59-82.
    (88) Fesinmeyer, R. M.; Hudson, F. M.; Andersen, N. H.: Enhanced Hairpin Stability through Loop Design:  The Case of the Protein G B1 Domain Hairpin. J. Am. Chem. Soc. 2004, 126, 7238-7243.
    (89) Andersen, N. H.; Olsen, K. A.; Fesinmeyer, R. M.; Tan, X.; Hudson, F. M.; Eidenschink, L. A.; Farazi, S. R.: Minimization and Optimization of Designed β-Hairpin Folds. J. Am. Chem. Soc. 2006, 128, 6101-6110.
    (90) Honda, S.; Yamasaki, K.; Sawada, Y.; Morii, H.: 10 Residue Folded Peptide Designed by Segment Statistics. Structure 2004, 12, 1507-1518.
    (91) Cochran, A. G.; Skelton, N. J.; Starovasnik, M. A.: Tryptophan zippers: Stable, monomeric β-hairpins. Proc.Natl. Acad. Sci.2001, 98, 5578-5583.
    (92) Searle, M. S.; Griffiths-Jones, S. R.; Skinner-Smith, H.: Energetics of Weak Interactions in a β-hairpin Peptide:  Electrostatic and Hydrophobic Contributions to Stability from Lysine Salt Bridges. J. Am. Chem. Soc. 1999, 121, 11615-11620.
    (93) Huyghues-Despointes, B. M.; Qu, X.; Tsai, J.; Scholtz, J. M.: Terminal ion pairs stabilize the second beta-hairpin of the B1 domain of protein G. CORD Conference Proceedings 2006, 63, 1005-1017.
    (94) Kraulis, P.: {MOLSCRIPT}: a program to produce both detailed and schematic plots of protein structures. J. Appl. Cryst. 1991, 24, 946-950.
    (95) Merrifield, B.: Solid phase synthesis. Science 1986, 232, 341-347.
    (96) Skoog, D. A.; West, D. M.; Holler, F. J.; Crouch, S. R.: Principles of instrumental analysis; sixth ed.; Thomoson Brooks/Cole: Belmont, CA, 2007.
    (97) Berova, N.; Nakanishi, K. O.; Woody, R.: Circular dichroism: principles and applications; 2nd ed.; Wiley-VCH: New York, 2000.
    (98) Singh, R. B.; Mahanta, S.; Guchhait, N.: Spectral modulation of charge transfer fluorescence probe encapsulated inside aqueous and non-aqueous β-cyclodextrin nanocavities. J. Mol. Struct. 2010, 963, 92-97.
    (99) Benesi, H. A.; Hildebrand, J. H.: A Spectrophotometric Investigation of the Interaction of Iodine with Aromatic Hydrocarbons. J. Am. Chem. Soc. 1949, 71, 2703-2707.
    (100)Yoon, T.; Cowan, J. A.: Iron−Sulfur Cluster Biosynthesis. Characterization of Frataxin as an Iron Donor for Assembly of [2Fe-2S] Clusters in ISU-Type Proteins. J. Am. Chem. Soc. 2003, 125, 6078-6084.
    (101)Guo, C.; Irudayaraj, J.: Fluorescent Ag Clusters via a Protein-Directed Approach as a Hg(II) Ion Sensor. Anal. Chem. 2011, 83, 2883-2889.
    (102)Joshi, B. P.; Lohani, C. R.; Lee, K.-H.: A highly sensitive and selective detection of Hg(ii) in 100% aqueous solution with fluorescent labeled dimerized Cys residues. Org. Biomol. Chem. 2010, 8, 3220-3226.
    (103)Lee, H. Y.; Jo, J.; Park, H.; Lee, D.: Ratiometric detection of mercury ions in water: accelerated response kinetics of azo chromophores having ethynyl ligand tethers. Chem. Commun. 2011, 47, 5515-5517.
    (104)Banerji, S. K.; Regmi, T. P.: Biodegradation of the chelator 2,6-pyridine dicarboxylic acid (PDA) used for soil metal extraction. Waste Manage. (Oxford) 1998, 18, 331-338.
    (105)Chen, Z.; Naidu, R.: On-column complexation of metal ions using 2,6-pyridinedicarboxylic acid and separation of their anionic complexes by capillary electrophoresis with direct UV detection. J. Chromatogr. A 2002, 966, 245-251.
    (106)Kier, B. L.; Andersen, N. H.: Probing the Lower Size Limit for Protein-Like Fold Stability: Ten-Residue Microproteins With Specific, Rigid Structures in Water. J. Am. Chem. Soc. 2008, 130, 14675-14683.
    (107)Shin, B.-k.; Saxena, S.: Insight into Potential Cu(II)-Binding Motifs in the Four Pseudorepeats of Tau Protein. J. Phys.Chem. B 2011, 115, 15067-15078.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE