簡易檢索 / 詳目顯示

研究生: 林虹君
Lin, Hong-Jyune
論文名稱: 醣脂質之合成
Synthesis of Glycolipids
指導教授: 林俊成
Lin, Chun-Cheng
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 112
中文關鍵詞: glycolipid
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 四種在醣體不同位置修飾之serine-based醣脂質已被合成且透過刺激TLR4測試其免疫活性,CCL-34-S11、CCL-34-S16、CCL-34-S17 及CCL-34-S18,分別是對半乳糖四號羥基位置進行烷化及葡萄糖胺二號胺基作衍生化。經由陽明大學傅淑玲教授的免疫細胞活性測試發現,其中葡萄糖胺之絲胺酸醣脂質CCL-34-S16 可有效地活化TLR4。另一種從台灣特有種溫泉菌Meiothermus taiwanensis NTU-220, Meiothermus rubber NTU-124, Thermus thermophilus NTU-077 及Thermus oshimai NTU-063純化分離之醣脂質PGL1之合成在本篇論文中亦被探討。
    PGL1為葡萄糖胺以□位向醣苷鍵與甘油磷脂質片段鍵結之新型醣脂質,為了達到好的□-位向選擇性,我們合成azide-typed與oxazolidinone-typed之醣予體,分別與數種醣受體進行醣基化反應。此外,在PGL1的全合成中,發展不同策略以建構同時具有□位向醣苷鍵與脂質之C-2’位置立體位向為(R)-form之目標片段。
    以oxazolidinone-typed 之醣予體所得到之醣基化產物為□/□可分離之混合物,而使用azide-typed之醣予體則得到不可分離之混合物。我們以oxazolidinone-typed 之醣予體27與半乳糖衍生物之醣受體54進行醣基化反應可得到完全□位向的產物,接著進行氫化、氧化斷鍵等反應,即可以七步總產率為26% 得到PGL1 之前趨物。


    目錄 中文摘要 II 英文摘要 IV 謝誌 VI 目錄 VIII 簡寫表 XIV 第一章 緒論1 1-1醣脂質 (Glycolipids) 1 1-1-1 醣脂質簡介 1 1-1-2 醣脂質參與免疫調節 2 1-1-3 □-半乳醣苷神經醯胺(□-Galactosylceramide) 6 1-1-4 □Natural antigen for NKT cells 9 1-2 合成醣脂質作為TLR4促效劑 12 1-2-1 類鐸受體 (Toll-Like Receptors) 12 1-2-2 TLR4作為免疫治療標的分子 13 1-3 天然物PGL1(phosphoglycolipid 1) 合成策略的開發與建構 15 1-3-1 PGL1背景介紹 15 1-3-2 1,2-順式醣苷鍵之合成研究 17 1-4 研究動機與目的 22 第二章 結果與討論 25 2-1 合成醣脂質作為TLR4促效劑 25 2-1-1 醣受體的合成 25 2-1-2 修飾醣體二號位置 25 2-1-3 修飾醣體四號位置 28 2-1-4 螢火蟲螢光酵素分析原理與方法(Luciferase assays) 31 2-1-5 活性結果與討論 32 2-2 天然物PGL1合成策略的開發與建構 33 2-2-1 PGL1合成溯徑分析 33 2-2-2 合成疊氮化物類之醣予體建構1,2-順式醣苷鍵 34 2-2-3 合成oxazolidinone-typed醣予體建構1,2-順式醣苷鍵 38 2-2-4 氧化斷鍵 (oxidative cleavage) 概念介紹 41 2-2-5 醣受體合成途徑 42 2-2-6 醣基化反應結果與討論 44 2-2-7 醣基化產物 46 合成延伸 48 2-2-8 其他的合成策略 52 2-2-9 結論 55 第三章、實驗部份 57 3-1 一般實驗方法 (試劑、溶劑與實驗儀器) 57 3-2 實驗步驟與光譜資料 58 第四章、參考文獻與資料 99 附錄 113 圖表目錄 圖目錄 圖1-1、三大類醣脂質 1 圖1-2、細胞分化示意圖 2 圖1-3、各型CD1的配位基 4 圖1-4、醣脂質抗原作用於CD1d-restricted NKT cell示意圖 5 圖1-5、透過TLRs調節NKT細胞釋放細胞激素機制 5 圖1-6、Agelasphin-9b結構分析與KRN7000 6 圖1-7、改變醣體與活性的相關性 7 圖1-8、修飾□-GalCer 醣體的六號位置 8 圖1-9、修飾□-GalCer脂肪醯鏈 8 圖1-10、不同植物鞘胺醇骨架的醣脂質 9 圖1-11、微生物誘發NKT細胞產生免疫反應機制 10 圖1-12、常見的Glycosphingolipids結構 11 圖1-13、細胞激素的作用示意圖 13 圖1-14、Agonist 與Antagonist 作用機制 14 圖1-15、LPS化學結構與其Lipid A衍生物 15 圖1-16、PGL1 及 PGL2 結構 16 圖1-17、添加硫醚提高□位向選擇性機制 18 圖1-18、Oxazolidinones leads to □- and □-linked saccharide 19 圖1-19、環狀碳酸酯醣予體進行醣基化反應中間體推測 20 圖1-20、螯合誘導變旋異構化效應 21 圖1-21、利用Ni(4-F-PhCN)4(OTf)2進行醣基化反應 22 圖1-22、Serine-based □-GalCer analogue 23 圖2-1、化合物9之1H-1H-COSY 光譜 29 圖2-2、選擇性開環之反應機構推測 30 圖2-3、PGL1逆合成分析 34 圖2-4、化合物 18 之 1H核磁共振光譜 37 圖2-5、Oxidative cleavage strategy 42 圖2-6、化合物 44 之1H核磁共振光譜截圖 46 表目錄 表1-1、改變溫度與添加劑對□□選擇性之影響 18 表1-2、DTBS 與苯亞甲基對位向選擇性之影響 20 表2-1、醣脂質生物活性測試結果 33 表2-2、利用azide-typed 醣予體進行醣基化反應 36 表2-3、利用oxazolidinone-typed 醣予體進行醣基化反應 40 表2-4、醣受體 34、36-38 之醣基化反應結果 45 表2-5、醣受體 40,41 之醣基化反應結果 47 表2-6、化合物 48 選擇性去保護 50 表2-7、水解乙縮醛結構的條件篩選與結果 53 流程目錄 流程一、醣受體1的合成 25 流程二、化合物 4 的合成 26 流程三、醣體二號位置的修飾 27 流程四、醣體四號位置修飾之醣予體合成 28 流程五、醣體四號位置的修飾 31 流程六、醣體C-2位置為疊氮官能基之醣予體合成步驟 35 流程七、化合物 18 進行疊氮官能基轉換 38 流程八、合成oxazolidinone-typed 醣予體 27 、 29 與 30 39 流程九、Lyxose衍生之醣受體合成 43 流程十、五員環葡萄糖衍生之醣受體合成 43 流程十一、嘗試保護化合物 46 之羥基 49 流程十二、化合物 50 進行oxidative cleavage 51 流程十三、其他的合成策略 52 流程十四、化合物 62 之合成及其延伸 54

    第四章 參考文獻與資料
    (1) Hakomori, S.; Zhang,Y.-M. Glycosphingolipid antigens and cancer therapy. Chem. Biol. 1997, 4, 97-104.
    (2) Bhat, S.; Spitalnik, S. L.; Gonzalezscarano, F.; Silberberg, D. H. Galactosyl ceramide or a derivative is an essential component of the neural receptor for human immunodeficiency virus type 1 envelope glycoprotein gp120 Proc. Natl. Acad. Sci. U. S. A. 1991, 88, 7131-7134.
    (3) Karlesson, K. A. Microbial recognition of target-cell glycoconjugates. Curr. Opin. Struct. Biol. 1995, 5, 622-635.
    (4) Yu, K. O. A.; Porcelli, S. A. The diverse functions of CD1d-restricted NKT cells and their potential for immunotherapy. Immunol. Lett. 2005, 100, 42.
    (5) Morita, M; Motoki, K.; Akimoto, K.; Natori, T.; Sakai, T.; Sawa, E.; Yamaji, K.; Koezuka, Y.; Kobayashi, E.; Fukushima, H. Structure-activity relationship of .alpha.-galactosylceramides against B16-bearing mice. J. Med. Chem. 1995, 38, 2176-2187.
    (6) Kawano, T.; Cui, J. Q.; Koezuka, Y.; Toura, I.; Kaneko, Y.; Motoki, K.; Ueno, H.; Nakagawa, R.; Sato, H.; Kondo, E.; Koseki, H.; Taniguchi, M. CD1d-restricted and TCR-mediated activation of V□14 NKT cells by glycosylceramides. Science 1997, 278, 1626-1629.
    (7) Paulick, M. G.; Bertozzi, C. R. The glycosylphosphatidylinositol anchor: a complex membrane-anchoring structure for proteins. Biochemistry 2008, 47, 6991-7000.
    (8) Bartke, N.; Hannun, Y. A. Bioactive sphingolipids: metabolism and function. J. Lipid Res. 2009, 50, S91 – S96
    (9) Hannuun, Y. A.; Obeid, L. M. Principles of bioactive lipid signalling: lessons from sphingolipids. Nat. Rev. Mol. Cell Biol. 2008, 9, 139-150.
    (10) Goldsby, R. A., Kindt, T. J., Osborne, B. A. Immunology, 5th ed. 2000, W. H. Freeman company, New York.
    (11) http://www.biology.arizona.edu/immunology/tutorials/immunology/02t.html
    (12) Porcelli S.A. The CD1 family: a third lineage of antigen-presenting molecules. Adv. Immunol. 1995, 59, 1-98.
    (13) Calabi, F.; Bradbury, A. Absence of DRw15/3 and of DRw15/7 heterozygotes in Caucasian patients with systemic lupus erythematosus. Tissue Antigens. 1991, 37, 1.
    (14) De Libero, G.; Mori, L. Recognition of lipid antigens by T cells. Nat. Rev. Immunol. 2005, 5, 485-496.
    (15) Wu, D.; Fujio, M.; Wong, C.-H. Glycolipids as immunostimulating agents. Bioorganic & Medicinal Chemistry 2008, 16, 1073-1083.
    (16) Akira, S.; Takeda, K.; Kaisho, T. Toll-like receptors: critical proteins linking innate and acquired immunity. Nat. Immunol. 2001, 2, 675-680
    (17) Aderem, A.; Ulevitch, R. J. Toll-like receptors in the induction of the innate immune response. Nature 2000, 406, 782-787.
    (18) Mattner, J. et al. Exogenous and endogenous glycolipid antigens activate NKT cells during microbial infections. Nature 2005, 434, 525-529.
    (19) Paget, C. et al. Activation of invariant NKT cells by TLR9-stimulated dendritic cells requires type I interferon and charged glycosphingolipids. Immunity 2007, 27, 597-609.
    (20) Salio, M. et al. Modulation of human naturel killer t cell ligands on TLR-mediated antigen-presenting cell activation. Proc. Natl. Acad. Sci. USA 2007, 104, 20490-20495.
    (21) Natori, T.; Koezuka, Y.; Higa, T. Agelasphins, novel □-galactosylceramides from the marine sponge Agelas mauritianus. Tetrahedron Lett. 1993, 34, 5591-5592.
    (22) Natori, T.; Morita, M.; Akimoto, K.; Koezuka, Y. Agelasphins, novel antitumor and immunostimulatory cerebrosides from the marine sponge Agelas mauritianus. Tetrahedron 1994, 50, 2771-2784.
    (23) Akimoto, K.; Natori, T.; Morita, M. Synthesis and stereochemistry of agelasphin-9b. Tetrahedron Lett. 1993, 34, 5593-5596.
    (24) Zhou, X.-T.; Forestier, C.; Goff, R. D.; Li, C.; Teyton, L.; Bendelac, A.; Savage, P. B. Synthesis and NKT cell stimulating properities of fluorophore- and biotin-appended 6’’-amino-6’’-deoxy-galactosylceramides. Org. Lett., 2002, 4, 1267.
    (25) Fufio, M.; Wu, D.; Garcia-Navarro, R.; Ho, D.-D.; Tsuji, M.; Wong, C.-H. Structure-based discovery of glycolipids for CD1d-mediated NKT cell activation: tuning the adjuvant versus immunosuppression activity. J. Am. Chem. Soc. 2006, 128, 9022-9023.
    (26) Fan, G.-T.; Pan, Y.-S.; Lu, K.-C.; Cheng, Y.-P.; Lin, W.-C.; Lin, S.; Lin, C.-H.; Wong, C.-H.; Fang, J.-M.; Lin, C.-C. Synthesis of a-galactosyl ceramide and the related glycolipids for evaluation of their activities on mouse splenocytes. Tetrahedron 2005, 61, 1855-1862.
    (27) Fischer, K.; Scotet, E.; Niemeyer, M.; Koebernick, H.; Zerrahn, J.; Maillet, S.; Hurwitz, R.; Kursar, M.; Bonneville, M.; Kaufmann, S. H. E.; Schaible, U. E. Mycobacterial phosphatidylinositol mannoside is a natural antigen for CD1d-restricted T cells. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 10685–10690.
    (28) Calabi, F.; Jarvis, J. M.; Martin, L.; Milstein, C. Two classes of CD1 genes. Eur. J. Immunol. 1989, 19, 285–292.
    (29) Rauch, J.; Gumperz, J.; Robinson, C.; Skold, M.; Roy, C.; Young, D. C.; Lafleur, M.; Moody, D. B.; Brenner, M. B.; Costello, C. E.; Behar, S. M. Structural features of the acyl chain determine self-phospholipid antigen recognition by a CD1d-restricted invariant NKT (iNKT) Cell. J. Biol. Chem. 2003, 278, 47508–47515.
    (30) Tsuji, M. Glycolipids and phosphblipids as natural CD1d-binding NKT cell ligands. Cell. Mol. Life Sci. 2006, 63, 1889–1898.
    (31) Brigl, M.; Brenner, M. B. CD1: antigen presentation and T cell function. Annu. Rev. Immunol. 2004, 22, 817–890.
    (32) Kinjo, Y.; Tupin, E.; Wu, D.; Fujio, M.; Garcia-Navarro, R.; Rafii-El-Idrissi Benhnia, M.; Zajonc, D. M.; Ben-Menachem, G.; Ainge, G. D.; Painter, G. F.; Khurana, A.; Hoebe, K.; Behar, S. M.; Beutler, B.; Wilsom, I. A.; Tsuji, M.; Sellati, T. J.; Wong, C.-H.; Kronenberg, M. Natural killer T cells recognize diacylglycerol antigens from pathogenic bacteria. Nature Immunol. 2006, 7, 978–986.
    (33) Kinjo, Y.; Wu, D.; Kim, G.; Xing, G.-W.; Poles, M. A.; Ho, D.-D.; Tsuji, M.; Kawahara, K.; Wong, C.-H.; Kronenberg, M. Recognition of bacterial glycosphingolipids by natural killer T cells. Nature 2005, 434, 520–525.
    (34) Kinjo, Y.; Pei, B.; Bufali, S.; Raju, R.; Richardson, S. K.; Imamura, M.; Fujio, M.; Wu, D.; Khurana, A.; Kawahara, K.; Wong, C.-H.; Howell, A. R.; Seeberger, P.; Kronenberg, M. Natural sphingomonas glycolipids vary greatly in their ability to activate natural killer T cells. Chem. Biol. 2008, 15, 654–664.
    (35) Olano, J. P.; Walker, D. H. Human ehrlichioses. Med. Clin. North Am. 2002, 86, 375.
    (36) Amprey, J. L.; Im, J. S.; Turco, S. J.; Murray, H. W.; Illarionov, P. A.; Besra, G. S.; Porcelli, S. A.; Spath, G. F. A subset of liver NKT cells is activated during Leishmania donovani infection by CD1d-bound lipophosphoglycan. J. Exp. Med. 2004, 200, 895–904.
    (37) Orloski, K. A.; Hayes, E. B.;Campbell, G. L.; Dennis, D. T. Surveillance for Lyme disease--United States, 1992-1998. MMWR CDC Surveill. Summ. 2000, 49, 1-11
    (38) Akira, S.; Uematsu, S.; Takeuchi, O. Pathogen recognition and innate immunity. Cell 2006, 124, 783-801.
    (39) Palsson-McDermott, E. M.; O'Neill, L. A. J. Signal transduction by the lipopolysaccharide receptor, Toll-like receptor-4. Immunology 2004, 113, 153-162.
    (40) Didonato, J. A.; Hayakawa, M.; Rothwarf, D. M.; Zandi, E.; Karin, M. A cytokine-responsive I□B kinase that activates the transcription factor NF-□B. Nature 1997, 388, 548-554.
    (41) Christ, W. J.; Asano, O.; Robidoux, A. L.; Perez, M.; Wang, Y.; Dubuc, G. R.; Gavin, W. E.; Hawkins, L. D.; McGuinness, P. D.; Mullarkey, M. A. E5531, a pure endotoxin antagonist of high potency. Science 1995, 268, 80-83.
    (42) Mullarkey, M.; Rose, J. R.; Bristol, J.; Kawata, T.; Kimura, A.; Kobayashi, S.; Przetak, M.; Chow, J.; Gusovsky, F.; Christ, W. J.; Rossignol, D. P. Inhibition of endotoxin response by E5564, a novel Toll-like receptor 4-directed endotoxin antagonist. J. Pharmacol. Exp. Ther. 2003, 304, 1093-1102.
    (43) Savov, J. D.; Brass, D. M.; Lawson, B. L.; McElvania-Tekippe, E.; Walker, J. K. L.; Schwartz, D. A. Toll-like receptor 4 antagonist (E5564) prevents the chronic airway response to inhaled lipopolysaccharide. Am. J. Physiol. Lung Cell Mol. Physiol. 2005, 289, L329-337.
    (44) http://www.invivogen.com/docs/Insight200705.pdf accessed in 2008/08/17.
    (45) Jiang, Z.-H.; Budzynski, W. A.; Skeels, L. N.; Krantz, M. J.; Koganty, R. R. Novel lipid A mimetics derived from pentaerythritol: synthesis and their potent agonistic activity. Tetrahedron 2002, 58, 8833-8842.
    (46) Tamai, R.; Asai, Y.; Hashimoto, M.; Fukase, K.; Kusumoto, S.; Ishida, H.; Kiso, M.; Ogawa, T. Cell activation by monosaccharide lipid A analogues utilizing Toll-like receptor 4. Immunology 2003, 110, 66-72.
    (47) Takayama, K.; Ribi, E.; Cantrell, J. L. Isolation of a Nontoxic Lipid A Fraction Containing Tumor Regression Activity. Cancer Res. 1981, 41, 2654-2657.
    (48) Vuopio-Varkila, J.; Nurminen, M.; Pyhala, L.; Makela, P. H. Lipopolysaccharide- induced non-specific resistance to systemic Escherichia coh infection in mice. J. Med. Microbiol. 1988, 25, 197-203.
    (49) Vernacchio, L.; Bernstein, H.; Pelton, S.; Allen, C.; MacDonald, K.; Dunn, J.; Duncan, D. D.; Tsao, G.; LaPosta, V.; Eldridge, J.; Laussucq, S.; Ambrosino, D. M.; Molrine, D. C. Effect of monophosphoryl lipid A (MPL (R)) on T-helper cells when administered as an adjuvant with pneumocococcal-CRM197 conjugate vaccine in healthy toddlers. Vaccine 2002, 20, 3658-3667.
    (50) Evans, J. T.; Cluff, C. W.; Johnson, D. A.; Lacy, M. J.; Persing, D. H.; Baldridge, J. R. Enhancement of antigen-specific immunity via the TLR4 ligands MPL adjuvant and Ribi.529. Expert Rev. Vaccines 2003, 2, 219-229.
    (51) Baldridge, J. R. Presented at the 3rd Meeting on Novel Adjuvants Currently in/close to Human Clinical Testing, World Health Organization/Tropical Disease Research Program–Fondation Mérieux, Annecy, France, 2002.
    (52) Yang, Y.-L.; Yang, F.-L.; Jao, S.-C.; Chen, M.-Y.; Tsay, S.-S.; Zou, W.; Wu. S.-H. Structural elucidation of phosphoglycolipids from strains of the bacterial thermophiles Thermus and Meiothermus. J. Lipid Res. 2006, 47, 1823-1832.
    (53) Yang, F.-L.; Hua, K.-F.; Yang, Y.-L.; Zou, W.; Chen, Y.-P.; Liang, S.-M.; Hsu, H.-Y.; Wu. S.-H. TLR-independent induction of human monocyte IL-1 by phosphoglycolipids from thermophilic bacteria. Glycoconjugate J. 2008, 25, 427-439.
    (54) Loppnow, H.;Werdan, K.; Reuter, G.; Flad, H.D. The interleukin-1 and interleukin-1 converting enzyme families in cardiovascular system. Eur. Cytokine. Netw. 1998, 9, 675–680.
    (55) Xaus, J.; Comalada, M.; Valledor, A. F.; Lloberas, J. Lopez-Soriano, F.; Argiles, J.M.; Yang, J.; Hooper, W.C.; Phillips, D.J.; Talkington, D.F. Interleukin-1 beta responses to Mycoplasma pneumoniae infection are cell-type specific. Microb. Pathog. 2003, 34, 17–25.
    (56) Petitou, M.; van Boeckel, C. A. A. A synthetic antithrombin III binding pentasaccharide is now a drug! What comes next? Angew. Chem., Int. Ed. 2004, 43, 3118–3133.
    (57) Echardt, K. Tunicamycins, streptovirudins and corynetoxins. A special subclass of nucleotide antibiotics. J. Nat. Prod. 1983, 46, 544–550.
    (58) Magnet, S.; Blanchard, J. S. Molecular insights into aminoglycoside action and resistance. Chem. Rev. 2005, 105, 477–497.
    (59) Danishefsky, S. J.; Allen, J. R. From the laboratory to the clinic: a retrospective on fully synthetic carbohydrate-based anticancer vaccines. Angew. Chem., Int. Ed. 2000, 39, 836–863.
    (60) Marcaurelle, L. A.; Bertozzi, C. R. Recent advances in the chemical synthesis of mucin-like glycoproteins. Glycobiology 2002, 12, 69R–77R.
    (61) Ferguson, M. A. J.; Williams, A. F. Cell-surface anchoring of proteins via glycosyl-phosphatidylinositol structures. Annu. Rev. Biochem. 1988, 57, 285– 320.
    (62) Banoub, J.; Boullanger, P.; Lafont, D. Synthesis of oligosaccharides of 2-amino-2-deoxy sugars. Chem. Rev. 1992, 92, 1167–1195.
    (63) Kerns, R. J.; Wei, P. In Carbohydrate Drug Design; Klyosov, A. A., Witczak, Z. J., Platt, D., Eds; ACS SymposiumSeries 932; American Chemical Society: Washington, DC, 2006; pp 205-236.
    (64) Bongat,A. F. G.; Demchenko, A. V. Recent trends in the synthesis of O-glycosides of 2-amino-2-deoxysugars. Carbohydr. Res. 2007, 342, 374–406.
    (65) Boltje, T. J.; Buskas, T.; Boons, G. J. Opportunities and challenges in synthetic oligosaccharide and glycoconjugate research. Nature Chemistry 2009, 1, 611-622.
    (66) Paulsen, H.; Lorentzen, J. P.; Kutschker, W. Erprobte synthese von 2-azido-2-desoxy-D-mannose und 2-azido-2-desoxy-D-mannuronsäure als baustein zum aufbau von bakterien-polysaccharid-sequenzen. Carbohydr. Res. 1985, 136, 153–176.
    (67) Park J.; Kawatkar, S.; Kim, J. H.; Boons, G. J. Stereoselective glycosylations of 2-azido-2-deoxy-glucosides using intermediate sulfonium ions. Org. Lett. 2007, 9, 1959-1962.
    (68) Benakli, K.; Zha, C.; Kerns, R. J. Oxazolidinone protected 2 amino 2 deoxy D-glucose derivatives as versatile intermediates in stereoselective oligosaccharide synthesis and the formation of alpha-linked glycosides. J. Am. Chem. Soc. 2001, 123, 9461-9462.
    (69) Manabe, S.; Ishii, K.; Ito, Y. N benzyl 2,3-oxazolidinone as a glycosyl donor for selective alpha-glycosylation and one-pot oligosaccharide synthesis involving 1,2 cis glycosylation. J. Am. Chem. Soc. 2006, 128, 10666–10667.
    (70) Olsson, J. D.; Eriksson, L.; Lahmann, M.; Oscarson, S. Investigations of glycosylation reactions with 2-N-acetyl-2N, 3O-oxazolidinone- protected glucosamine donors. J. Org. Chem. 2008, 73, 7181–7188.
    (71) Manabe, S.; Ishii, K.; Hashizume, D.; Koshino, H.; Ito, Y. Evidence for endocyclic cleavage of conformationally restricted glycopyranosides. Chem. Eur. J. 2009, 15, 6894–6901.
    (72) Imamura, A.; Ando, H.; Korogi, S.; Tanabe, G.; Muraoka, O.; Ishida, H.; Kiso, M. Di-tert-butylsilylene (DTBS) group-directed α-selective galactosylation unaffected by C-2 participating functionalities. Tetrahedron Lett. 2003, 44, 6725-6728.
    (73) Pilgrim, W.; Murphy, P. V. □-Glycosphingolipids via chelation- induced anomerization of O- and S-glucuronic and galacturonic acid derivatives. Org. Lett. 2009, 11, 939-942.
    (74) Mensah, E. A.; Nguyen, H. M. Nickle-catalyzed stereoselective formation of □-2-deoxy-2-amino glycosides. J. Am. Chem. Soc. 2009, 131, 8778-8780.
    (75) Hung, L.-C.; Lin, C.-C.; Hung, S.-K.; Wu, B.-C.; Jan, M.-D.; Liou, S.-H.; Fu, S.-L. A synthetic analog of alpha-galactosylceramide induces macrophage activation via the TLR4-signaling pathways. Biochem. Pharmacol. 2007, 73, 1957-1970.
    (76) 黃立德,國立清華大學化學研究所 碩士論文,合成醣脂質做為TLR4促效劑,民國97年.
    (77) Arend, W. P.; Malyak, M.; Guthridge, C. J.; Gabay, C. Interleukin-1 receptor antagonist; role in biology. Annu. Rev. Immunol. 1998, 16, 27–55.
    (78) Brimble, M. A.; Kowalczyk, R.; Harris, P. W. R.; Dunbar, P. R.; Muir, V. J. Synthesis of fluorescein-labelled O-mannosylated peptides as components for synthetic vaccines: comparison of two synthetic strategies. Org. Biomol. Chem. 2008, 6, 112-121.
    (79) Hasegawa, T.; Numata, M.; Okumura, S.; Kimura, T.; Sakurai, K.; Shinkai, S., Carbohydrate-appended curdlans as a new family of glycoclusters with binding properties both for a polynucleotide and lectins. Organic & Biomolecular Chemistry 2007, 5 , 2404-2412.
    (80) Sherman, A. A.; Mironov, Y. V.; Yudina, O. N. Nifantiev, N. E. The presence of water improves reductive openings of benzylidene acetals with trimethylaminoborane and aluminium chloride. Carbohydr. Res. 2003, 338, 697-703.
    (81) Shie, C.-R.; Tzeng, Z.-H.; Kulkarni, S. S.; Uang, B.-J.; Hsu, C.-Y.; Hung, S.-C. Cu(OTf)2 as an efficient and dual-purpose catalyst in the regioselective reductive ring opening of benzylidene acetals. Angew. Chem., Int. Ed. 2005, 44, 1665-1668.
    (82) Johnsson, R.; Olsson, D.; Ellervik, U. Reductive openings of acetals: Explanation of regioselectivity in borane reductions by mechanistic studies. J. Org. Chem. 2008, 73, 5226-5232.
    (83) Alper, P. B.; Hung, S.-C.; Wong, C.-H. Metal catalyzed diazo transfer for the synthesis of azides from amines. Tetrahedron Lett. 1996, 37, 6029-6032.
    (84) Ren, C.-T.; Tsai, Y.-H.; Yang, Y.-L.; Zou, W.; Wu, S.-H. Synthesis of a tetrasaccharide glycosyl glycerol precursor to glycolipids of Meiothermus taiwanensis ATCC BAA-400. J. Org. Chem. 2007, 72, 5427-5430.
    (85) Wei, P. ;Kerns, R. J. Factors affecting stereocontrol during glycosidation of 2,3-Oxazolidinone-protected 1-tolyl thio-N-acetyl-d-glucosamine. J. Org. Chem. 2005, 70, 4195-4198.
    (86) Geng, Y.; Zhang, L.-H.; Ye, X.-S. Stereoselectivity investigation on glycosylation of oxazolidinone protected 2-amino-2-deoxy-D-glucose donors based on pre-activation protocol. Tetrahedron 2008, 64, 4949–4958.
    (87) Carlsen, H. J. Katsuki, T. Martin, V. S.; Sharpless, K. B. A greatly improved procedure for ruthenium tetroxide catalyzed oxidations of organic compounds. J. Org. Chem. 1981, 46, 3936-3938.
    (88) Webster, F. X.; Silverstein, R. M. Synthesis of optically pure enantiomers of grandisol. J. Org. Chem. 1986, 51, 5226-5231.
    (89) Lin, C.-C.; Fan, G.-T.; Fang, J.-M. A concise route to phytosphingosine from lyxose. Tetrahedron Lett. 2003, 44, 5281–5283.
    (90) Chang, C.-W.; Chen, Y.-N.; Adak, A. K.; Lin, K.-H.; Tzoua, D.-L. M.; Lin, C.-C. Synthesis of phytosphingosine using olefin cross-metathesis: a convenient access to chain-modified phytosphingosines from D-lyxose. Tetrahedron 2007, 63, 4310–4318.
    (91) Chen, M.-Y.; Patkar, L. N.; Lu, K.-C.; Lee, A. S.-Y.; Lin, C.-C. Chemoselective deprotection of acid labile primary hydroxyl-protecting groups under CBr4-photoirradiation condition. Tetrahedron 2004, 60, 11465-11475.
    (92) Ding, N.; Li, C.-X.; Liu, Y.-P.; Zhang, Z.-H.; Li, Y.-X. Concise synthesis of clarhamnoside, a novel glycosphingolipid isolated from the marine sponge Agela clathrodes. Carbohydr. Res. 2007, 342, 2003-2013.
    (93) Iversen, T.; Bundle, D. R. Benzyl trichloroacetimidate, a versatile reagent for acid –catalysed benzylation of hydroxy groups. J. C. S. Chem. Comm. 1981, 1240-1241.
    (94) Zakirova, N. F.; Shipitsyn, A. V.; Belanov, E. F.; Jasko, M. V. A new approach to the synthesis of optically active alkylated adenine derivatives. Bioorg. Med. Chem. Lett. 2004, 14, 3357-3360.
    (95) Alvarez-Manzaneda, E. J.; Chahboun, R.; Cano, M. J.; Cabrera Torres, E.; Alvarez, E.; Alvarez-Manzaneda, R.; Haidour, A.; Ramos López, J. M. O3/Pb(OAc)4: a new and efficient system for the oxidative cleavage of allyl alcohols. Tetrahedron Lett. 2006, 47, 6619-6622.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE