研究生: |
鄭至凱 Jheng, Jhih-Kai. |
---|---|
論文名稱: |
外纜承風式模組化輕量風機葉片設計開發 Design and Development of Lightweight Wind Turbine Blades based on External Force-bearing Cables and Modular Structure |
指導教授: |
曹哲之
Tsao, Che-Chih |
口試委員: |
蔣小偉
Chiang, Hsiao-Wei 張禎元 Chang, Jen-Yuan |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 79 |
中文關鍵詞: | 風力發電機葉片 、葉片輕量化結構 、模組化組合式葉片 |
外文關鍵詞: | wind turbine blade, lightweight blade structure, blade assembly modularization |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究提出用於流體動力發電的轉子葉片之新設計,其目的在維持強度的同時也降低轉子質量,而不大幅增加材料成本,並且將葉片模組化以降低系統組裝成本。主要的概念是使用外部纜繩將每一個葉片與通過轉子中軸的支撐柱上之不同位置做連接,葉片上的大部分負載力會被分為纜繩張力和結構壓縮力並施加至輪轂上,因此葉片上的彎矩和剪應力能夠大幅地被降低,葉片僅需更少的材料就能夠承受葉片上的負載力,所以可以在葉片中應用輕量結構以減輕重量。本研究中提出兩種新葉片結構設計:桁架結構和組合式箱型翼樑。以現有半徑40 公尺的葉片為例,由力學分析顯示應用新結構設計,在安全係數為2.5的狀況下,葉片總質量可以降低至現有值的10~17%。本研究使用組合式箱型翼樑結構以及外部纜繩,以模組化方式完成半徑1公尺的雙葉片轉子模型,並進行模型負載試驗,將外部負載掛至特定的葉片位置後,量取特定點的應變量,經由模擬結果與實驗數據的相互驗證下,可證實此結構設計確實能夠承受模擬的負載並達到輕量化的效果。這種新設計的潛在優勢包括能夠降低風力發電機的運輸和安裝成本,並對大型水輪機的潮汐、海流發電的發展可有相當的助益。
This research proposes and studies new designs for rotor blades used in fluid kinetic power generation with the aims of reducing rotor mass while maintaining strength without increasing material costs significantly and of modularizing blade construction to reduce system assembly costs. The key concept is to use a set of external cables attached to each blade at multiple positions, via a center post along the rotor axis, to redirect most of the loading exerted on the blades to the rotor hub through wire tension and structural compression rather than cantilever bending. Thus, bending moments and shear forces on blade can be reduced significantly. Correspondingly, much less materials are needed and lightweight structures can be applied in the blade to reduce weight. Two new constructions of blade structure were conceived and designed: a truss structure and an assembled spar box structure. Using a 40 m radius blade of the existing technology as an example, analyses by mechanics show that total mass of blades can be reduced to 10-17% of the existing value, under a safety factor of 2.5, by applying the new designs. Modularization designs were conceived. A model rotor of two 1 m model blades using the assembled spar box structure and the external force bearing cables design was built and assembled applying the modularization design. The model was subjected to loading tests and strain measurements at key positions on the assembled spar boxes confirmed the validity of the design. Potential benefits of this new design include reducing transportation and installation costs of wind turbines and easing the development of large water turbines for tidal/sea current power generation.
[1] Anonymous, Global Wind Energy Council “GLOBAL WIND STATISTICS”, https://www.gwec.net/wp-content/uploads/vip/GWEC-PRstats-2015_LR.pdf /, October, 2015.
[2] Anonymous, “International Energy Agency(IEA)-Electricicity and Heat for 2014”, http://www.iea.org/statistics/statisticssearch/report/?country=WORLD&product=electricityandheat&year=2014/, 2014.
[3] 曹哲之、簡志軒、呂學宗、鄭至凱,清華大學動機系專題展“新式超高度風力發電系統之氣球浮翼系統概念設計與模型實驗”,2014。
[4] Anonymous, “Altaeros energies high altitude wind turbine deploys at 1,000 feet”, http://www.designboom.com/technology/altaeros-energies-high-altitude-wind-turbine-03-24-2014/, March, 2014.
[5] Anonymous, “World’s longest wind turbine blade successfully completes its first journey”, http://www.lmwindpower.com/en/stories-and-press/stories/news-from-lm-places/transport-of-longest-blade-in-the-world/, 2016.
[6] Please refer to Vestas web site, https://www.vestas.com/.
[7] Anonymous, “Vestas challenges scaling rules with multi-rotor concept
demonstration turbine”, https://www.vestas.com/multirotor/, April, 2016.
[8] J. Cotrell, T. Stehly, J. Johnson, J. O. Roberts,Z. Parker, G. Scott, and D. Heimiller, “Analysis of Transportation and Logistics Challenges Affecting the Deployment of Larger Wind Turbines: Summary of Results”, 2014.
[9] Erich Hau, Wind Turbines : Fundamentals, Technologies, Application and Economics, Second Edition, Springer, 2006.
[10] Kyle K. Wetzel , “Modular Blade Design & Manufacturing”, Wetzel Engineering Inc., 2014.
[11] Anonymous, “How rotor blades defy the forces of nature”, https://www.basf.com/en/company/news-and-media/science-around-us/how-rotor-blades-defy-the-forces-of-nature.html/.
[12] Anonymous, “GE Developing Wind Blades That Could Be the Fabric of Our Clean Energy Future”, http://www.businesswire.com/news/home/20121128006348/en/GE-Developing-Wind-Blades-%E2%80%9CFabric%E2%80%9D-Clean-Energy/, November, 2012.
[13] Robert Gasch, Jochen Twele (Eds.) , Wind Power Plants: Fundamentals, Design, Construction and Operation, Second Edition, Springer, 2012.
[14]曹哲之,“Wind rotor master drawings d1”,(未公開文件)。
[15] Anonymous, “DuPont™ Tedlar® Polyvinyl Fluoride (PVF) Films General Properties”, DuPont, 2014.
[16] Anonymous , “Zeppelin NT - Technical Data - Carnet de Vol” ,
https://www.carnetdevol.org/zeppelin/Technical.html/, 2009.
[17] Robert D. Cook, David S. Malkus, Michael E. Plesha, Robert J. Witt, “Concepts and applications of finite element analysis”, Fourth edition , John Wiley & Sons, Inc., 2002.
[18] Anonymous , “WIND ENERGY HANDBOOK”, Gurit, http://www.gurit.com/.
[19] R. Gasch, J. Maurer, C. Heilmann, “Blade geometry” Chapter 5 in Wind Power Plants: Fundamentals, Design, Construction and Operation, Second Edition, ed. by Robert Gasch, Jochen Twele, Springer, 2012.