研究生: |
周珊霙 Chou, Shan-Ying |
---|---|
論文名稱: |
應用於多重過敏微陣列晶片之整合型微流體系統 An integrated microfluidic system for automating multiplex allergy microarrays |
指導教授: |
李國賓
Lee, Gwo-Bin |
口試委員: |
洪上程
沈延盛 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 生物醫學工程研究所 Institute of Biomedical Engineering |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 英文 |
論文頁數: | 49 |
中文關鍵詞: | 過敏 、微陣列 、微流體 、診斷 、多重檢測 |
外文關鍵詞: | Allergy, Microarray, Microfluidics, Diagnosis, Multiplex detection |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
此篇研究整合了一個專門檢測過敏微陣列晶片的自動化微流體系統。過敏已經是現下社會中常見疾病之一,其發生是因為人體的免疫系統會對於周遭環境的過敏原產生過敏反應。然而,現行的過敏檢測需要訓練有素的人員手動來操控相對繁複的流程。本論文結合了微流道技術和微陣列晶片來開發一個微型過敏檢測晶片的整合性微流體系統。從我們先前的實驗中,可以證實一個在微陣列晶片上檢測過敏的微流道系統是可行的。經過大量製造單區反應晶片並優化相關參數後,顯示其螢光訊號在反應時間減少了三分之一後仍可達到現行手動晶片的強度。為了有效的降低成本以及簡化流程,本研究開發了一個可同時多樣本的全新過敏檢測系統,實驗結果證實了多區反應可以獲得相似的訊號。未來利用此微流體系統在微陣列過敏晶片上自動化多重檢測不只可以達到現行手動晶片的訊號強度,還有機會可獲得更多的生物應用。
This study reports an integrated automatic microfluidic system for detection of allergy in a microarray platform. Nowadays, allergy is very common in the world. It is a response of the human immune system to antigens in the surroundings. However, detection for allergy requires tedious manual operation, well-trained technicians and a relatively labor-intensive process. In the study, an integrated microfluidic system has been developed by combining several microfluidic techniques and microarray chips. Our previous experiments showed that a microfluidic system for allergy-diagnosis on microarray chips could be realized. It was demonstrated that after mass fabrication, the use of optimized conditions could obtain the similar fluorescence signals to the ones from manual processes and it only took only 20 minutes for the single reaction zone. In order to cut down costs and simplify the process, a new microfluidic system capable of simultaneous multiplex allergy-diagnosis was developed in this work. Experimental results demonstrated that multiplex reaction zones showed similar signals. Not only could it obtain the signals comparable to the on-bench experiments, but it also could increase the applicability of the integrated microfluidic system for automating multiplex detection on allergy microarray chips.
1. Grayson, A.C.R., et al., A BioMEMS review: MEMS technology for physiologically integrated devices. Proceedings of the Ieee, 2004. 92(1): p. 6-21.
2. Manz, A., Graber, N., and Widmer, H.M., Miniaturized Total Chemical-Analysis Systems - a Novel Concept for Chemical Sensing. Sensors and Actuators B-Chemical, 1990. 1(1-6): p. 244-248.
3. Auroux, P.A., et al., Micro total analysis systems. 2. Analytical standard operations and applications. Analytical Chemistry, 2002. 74(12): p. 2637-2652.
4. Pawankar, R., Allergic diseases and asthma: a global public health concern and a call to action. World Allergy Organ J, 2014. 7(1): p. 12.
5. Dreborg, S.F., Position paper: Allergen standardization and skin tests. The European Academy of Allergology and Clinical Immunology. Allergy, 1993. 48(14 Suppl): p. 48-82.
6. Wide, L., et al., Diagnosis of allergy by an in-vitro test for allergen antibodies. Lancet, 1967. 2(7526): p. 1105-7.
7. Pomes, A., et al., Monitoring peanut allergen in food products by measuring Ara h 1. J Allergy Clin Immunol, 2003. 111(3): p. 640-5.
8. Peng, J., et al., Development of a monoclonal antibody-based sandwich ELISA for peanut allergen Ara h 1 in food. Int J Environ Res Public Health, 2013. 10(7): p. 2897-905.
9. Engvall, E. and Perlmann, P., Enzyme-Linked Immunosorbent Assay (Elisa) Quantitative Assay of Immunoglobulin-G. Immunochemistry, 1971. 8(9): p. 871-&.
10. Mendoza, L.G., et al., High-throughput microarray-based enzyme-linked immunosorbent assay (ELISA). Biotechniques, 1999. 27(4): p. 778-+.
11. Angenendt, P., et al., Toward optimized antibody microarrays: a comparison of current microarray support materials. Analytical Biochemistry, 2002. 309(2): p. 253-260.
12. Yunginger, J.W., et al., Quantitative IgE antibody assays in allergic diseases. Journal of Allergy and Clinical Immunology, 2000. 105(6): p. 1077-1084.
13. Lueking, A., et al., Protein microarrays for gene expression and antibody screening. Analytical Biochemistry, 1999. 270(1): p. 103-111.
14. Widmer, H.M., Trends in Industrial Analytical-Chemistry. Trac-Trends in Analytical Chemistry, 1983. 2(1): p. R8-R10.
15. Fu, A.Y., et al., An integrated microfabricated cell sorter. Analytical Chemistry, 2002. 74(11): p. 2451-2457.
16. Gervais, L. and Delamarche, E., Toward one-step point-of-care immunodiagnostics using capillary-driven microfluidics and PDMS substrates. Lab on a Chip, 2009. 9(23): p. 3330-3337.
17. Unger, M.A., et al., Monolithic microfabricated valves and pumps by multilayer soft lithography. Science, 2000. 288(5463): p. 113-116.