簡易檢索 / 詳目顯示

研究生: 張巧欣
Chang, Chiao-Hsin
論文名稱: 利用實驗與計算探討脯胺酸衍生物對聚脯胺酸以及β-hairpin 結構之影響
Using experimental and computational approaches to study the effects of proline derivatives on the structure of polyproline and β-hairpin
指導教授: 洪嘉呈
Horng, Jia-Cherng
口試委員: 洪嘉呈
Horng, Jia-Cherng
江昀緯
Chiang, Yun-Wei
莊士卿
Chuang, Shih-Ching
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 59
中文關鍵詞: 脯胺酸聚脯胺酸n→π* 作用力立體電子效應DFT
外文關鍵詞: n→π* interactions, β-hairpin, (2S)-4-ketoproline, (2S)-4,4-difluoroproline, ring pucker, Gaussian 09
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 聚脯胺酸 (polyproline) 可以形成 PPI 或是 PPII 結構,而胜肽鏈上的
    n→π* 作用力被視為是穩定 PPII 結構的重要因素。本實驗室在先前的研究中利
    用脯胺酸 (proline) 衍生物,合成一系列聚脯胺酸胜肽,探討立體電子效應對於
    聚脯胺酸結構在 PPI 與 PPII 結構間轉換的活化能之影響,並在 HP7 胜肽中置
    換脯胺酸衍生物來探討立體電子效應對於 β-hairpin 的結構與穩定度之影響。
    本次研究中,除了將 (2S)-4,4-difluoroproline (Dfp) 與 (2S)-4-ketoproline
    (Kep) 兩種脯胺酸衍生物置換到聚脯胺酸上,且利用圓二色光譜探討其對於 PPI
    與 PPII 結構的影響外,並藉由理論計算研究得到一系列聚脯胺酸胜肽的結構資
    訊,包含 φ 、 ψ 以及 χ 二面角都是在聚脯胺酸中重要的結構資訊。理論計算
    部分我們使用 Gaussian 軟體, DFT 方法進行結構最佳化,實驗所合成之 HN-
    (Pro)5X(Pro)5-OH 胜肽在計算上都以Ac-(Pro)2X(Pro)2-OMe 分子模型來取代。計
    算結果顯示,當 χ 為正值時, Dfp 、 Kep 與 thiaproline (Thp) 的 pyrrolidine
    ring 不會形成典型的 endo pucker ,而是形成類似扭曲平面的特殊構形,其被置
    換到聚脯胺酸胜肽上,對於 PPI結構會有明顯的影響。
    另外在 HP7 胜肽的部分,先前研究顯示當 Pro 被置換成 Thp ,原本 wild-
    type 的 β-hairpin 結構會崩解,形成 random coil 。因此我們截取中間形成 turn
    的序列 NPATGK 以及 turn 兩端的 Trp ,建立 WNPATGKW 作為分子計算模
    型,利用 ONIOM 計算方法進行一系列的計算。計算結果顯示, Thp 的置換使
    得 Asn 的 C=O 與 Lys 的 N-H 之間的距離加大,氫鍵作用力消失,並且造成
    Pro5 與 Trp3 之間的距離縮短,使得兩者之間的空間推擠作用變大,結構變得
    不穩定,因此無法形成穩定的 β-hairpin 結構。


    Polyproline can form either type I (PPI) or type II (PPII) helices. The backbone
    n→π* interactions have been suggested to play a critical role in stabilizing a PPII helix.
    In our previous study, we prepared a series of polyproline peptides with proline
    derivatives incorporated to evaluate stereoelectronic effects on the transition energy
    barrier of the conversion between PPI and PPII conformation. We also incorporated
    proline derivatives into the HP7 peptide to investigate stereoelectronic effects on β-
    hairpin.
    In this work we prepared two polyproline peptides in which (2S)-4-ketoproline
    (Kep) and (2S)-4,4-difluoroproline (Dfp) were incorporated. Circular dichroism (CD)
    spectroscopy was used to characterize their conformation. We also used a
    computational approach to study the effects of Kep, Dfp and thiaproline (Thp) on
    polyproline conformation. For each model compound and system, hybrid density
    function theory (DFT) calculations, as implement in Gaussian 09, were carried out on
    the conformation, and the dihedral angels φ, ψ and χ were measured for polyproline.
    We used Ac-(Pro)2X(Pro)2-OMe as a model system for the computation. Typical 4-
    substituted Pro derivatives display either a Cγ
    -endo or a Cγ
    -exo ring pucker. Such
    conformations are not readily accessible to Ac-Kep-OMe, Ac-Dfp-OMe and Ac-Thp-
    OMe. When Ac-Kep-OMe, Ac-Dfp-OMe and Ac-Thp-OMe adopt a Cγ
    -endo pucker,
    their pyrrolidine ring is significantly distorted and distinctly different from other 4-
    substituted proline derivative. This may explain why Kep, Dfp, and Thp destabilize PPI
    conformation as observed in experiments.
    Moreover, the HP7 peptide could not form β-hairpin upon incorporating Thp into
    the peptide. We chose WN-X-ATGKW sequence as a model system for computation as
    it can form H-bonds required for a β-turn in HP7. ONIOM calculation was carried out on the structure. The calculated result reveals that Thp substitution on HP7 makes the
    H-bond between C=O of Asn4 and N-H of Lys9 broken as the distance between the
    residues increases. Thp substitution also makes the distance between Pro5 and Trp3
    decrease, which may increase the steric repulsion between the residues. The
    computational results may in part explain why Thp dramatically destabilize HP7.

    中文摘要 I Abstract II 目錄 IV 圖索引 VI 表索引 IX 第一章 緒論 1 1-1 蛋白質簡介 1 1-2 聚脯胺酸 (polyproline) 介紹 2 1-3 立體電子效應 (stereoelectronic effect) 4 (1) 立體電子效應對脯胺酸衍生物的影響 6 (2) 立體電子效應對聚脯胺酸構形穩定度的影響 8 1-4 HP7 9 1-5 固相胜肽合成 (Solid Phase Peptide Synthesis, SPPS) 介紹 11 1-6 圓二色光譜 (Circular dichroism spectroscopy, CD) 15 1-7 研究方向 17 第二章 實驗合成部分 18 2-1 儀器 18 2-2 藥品 19 2-3 化合物之合成與鑑定 20 2-3-1 化合物 Fmoc-4-ketoproline (Fmoc-Kep-OH) 之合成 20 2-3-2 化合物 Fmoc-4,4-difluoroproline (Fmoc-Dfp-OH) 之合成 21 2-3-3 Fmoc-Tyr(t-Bu)-resin 之合成 21 2-4 胜肽的合成、純化與鑑定 22 2-5 CD 光譜測量 23 第三章 計算研究方法與步驟 25 3.1 研究系統以及計算方法 25 3.2 研究步驟 26 第四章 實驗結果與討論 29 第一部分 聚脯胺酸 29 4-1 聚脯胺酸胜肽的設計 29 4-2 脯胺酸衍生物的構形 29 4-3 聚脯胺酸系列胜肽 CD 測量結果討論: 33 4-3-1 水溶液中之 CD 光譜 33 4-3-2 n-propanol 溶液中之 CD 光譜 36 4-3-3 Kep-P11 在 n-propanol 溶液中的變溫實驗 37 4-4 聚脯胺酸置換脯胺酸衍生物後的結構 40 4-5 脯胺酸衍生物的 n→π* 作用力 48 第二部分 HP7 系列胜肽 50 4-6 模擬 HP7 系列胜肽的分子計算模型 50 第五章 結論 55 參考文獻 56 附錄1 58 附錄2 59

    [1] Alpha helix Pictures Photo Gallery added by crook, WITHFRIENDSHIP.COM,
    http://withfriendship.com/user/crook/alpha-helix.php. accecible on 2013.5.29
    [2] Kurt D. Berndt, Principles of Protein Structure Using the Internetprotein,
    http://www.cryst.bbk.ac.uk/PPS2/course/section8/ss-960531_11.html.
    accecible on 2013.5.29
    [3] ISMB Tutorial 2,
    http://bioinf.mpi-inf.mpg.de/conferences/ismb99/WWW/TUTORIALS/Brutlag
    /brutlag.html. accecible on 2013.5.29
    [4] David E. Volk, citizendium,
    http://en.citizendium.org/wiki/File:BetaSheetByDEVolk.jpg.
    accecible on 2013.5.29
    [5] H. Z. Zhong and H. A. Carlson, J. Chem. Theory Comput. 2 (2006) 342.
    [6] J. C. Horng and R. T. Raines, Protein Sci. 15 (2006) 74.
    [7] G. Siligardi and A. F. Drake, Biopolymers 37 (1995) 281.
    [8] A. Bhattacharyya, A. K. Thakur, V. M. Chellgren, G. Thiagarajan, A. D. Williams,
    B. W. Chellgren, T. P. Creamer and R. Wetzel, J. Mol. Biol. 355 (2006) 524.
    [9] A. Rich and F. H. C. Crick, J. Mol. Biol. 3 (1961) 483.
    [10] Joint and Muscle Relief,
    http://www.joint-muscle-relief.com/how-to-build-collagen.html.
    accecible on 2013.5.29
    [11] S. Park, T. E. Klein and V. S. Pande, Biophysical Journal 93 (2007) 4108.
    [12] M. P. Hinderaker and R. T. Raines, Protein Sci. 12 (2003) 1188.
    [13] J. A. Hodges and R. T. Raines, Org. Lett. 8 (2006) 4695.
    [14] C. E. Jakobsche, A. Choudhary, S. J. Miller and R. T. Raines, J. Am. Chem. Soc.
    132 (2010) 6651.
    [15] N. Panasik, E. S. Eberhardt, A. S. Edison, D. R. Powell and R. T. Raines, Int. J.
    Pept. Protein Res. 44 (1994) 262.
    [16] C. Benzi, R. Improta, G. Scalmani and V. Barone, J. Comput. Chem. 23 (2002)
    341.
    [17] R. Improta, C. Benzi and V. Barone, J. Am. Chem. Soc. 123 (2001) 12568.
    [18] S. Wolfe, Acc. Chem. Res. 5 (1972) 102.
    [19] C. M. Taylor, R. Hardre and P. J. B. Edwards, J. Org. Chem. 70 (2005) 1306.
    [20] L. E. Bretscher, C. L. Jenkins, K. M. Taylor, M. L. DeRider and R. T. Raines, J.
    Am. Chem. Soc. 123 (2001) 777.
    [21] Y. C. Chiang, Y. J. Lin and J. C. Horng, Protein Sci. 18 (2009) 1967.
    [22] 姜怡君, 碩士論文, 2009, 國立清華大學.
    [23] N. H. Andersen, K. A. Olsen, R. M. Fesinmeyer, X. Tan, F. M. Hudson, L. A.
    Eidenschink and S. R. Farazi, J. Am. Chem. Soc. 128 (2006) 6101.
    [24] Proteopedia,
    http://www.proteopedia.org/wiki/images/thumb/8/88/2evq.png/200px-2evq.png.
    accecible on 2013.5.29
    [25] Dr. Jakubowski, Biomolecular Crystallography Book, 2013
    http://employees.csbsju.edu/hjakubowski/classes/ch331/protstructure
    /olcompseqconform.html. accecible on 2013.5.29
    [26] M. L. DeRider, S. J. Wilkens, M. J. Waddell, L. E. Bretscher, F. Weinhold, R. T.
    Raines and J. L. Markley, J. Am. Chem. Soc. 124 (2002) 2497.
    [27] D. Roy, G. Pohl, J. Ali-Torres, M. Marianski and J. J. Dannenberg, Biochemistry
    51 (2012) 5387.
    [28] S. Park, R. J. Radmer, T. E. Klein and V. S. Pande, J. Comput. Chem. 26 (2005)
    1612.
    [29] 林芷瑩, 專題研究, 2012, 國立清華大學化學系.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE