簡易檢索 / 詳目顯示

研究生: 陳彥睿
Chen, Yan-Ruei
論文名稱: 果膠/聚乙二醇黏結劑及電解質在磷酸鐵鋰電池中的應用研究
Study on the Application of Eco-friendly Recyclable Pectin/Polyethylene Glycol Binders and Electrolytes in Lithium Iron Phosphate Battery
指導教授: 吳茂昆
Wu, Maw-Kuen
張廖貴術
Chang Liao, Kuei-Shu
口試委員: 馬遠榮
Ma, Yuan-Ron
林志明
Lin, Chih-Ming
吳孟真
Wu, Phillip
唐宏怡
Tang, Hong-Yi
學位類別: 博士
Doctor
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2025
畢業學年度: 113
語文別: 英文
論文頁數: 227
中文關鍵詞: 水基黏結劑環境友善果膠聚乙二醇磷酸鐵鋰
外文關鍵詞: water-based binder, eco-friendly, Pectin, PEG, LiFePO4
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中文摘要
    本次論文主要透過開發兼具環境友善與優異性能的材料來推動鋰電池技術的進步。此次介紹了新型的水基果膠-PEG 結合劑,用於鋰鐵磷酸鹽(LiFePO₄, LFP)正極;利用自由結構的果膠天然柔韌性與聚乙二醇(PEG-200)配合,與傳統的 PVDF 結合劑相比,該果膠-PEG 結合劑展現出優良自我修復特性,更提升了優異的黏著性與穩定的性能平衡。使用此結合劑在 1C 倍率 500 多次循環後仍能保持約 150 mAh g⁻¹ 的容量,且容量維持率約 99%;在 3C 下,放電容量約 141 mAh g⁻¹,保持率達到 97% 以上。在使用循環保護方法後,展現出高倍率充放電性能。
    循環伏安法顯示該果膠-PEG 正極材料具備優異的離子擴散特性,而伽凡諾間歇滴定法則揭示 LFP-PP250 電極在工作電壓內表現出較高的鋰離子擴散係數 (DLi⁺),本次開發了該果膠-PEG 的高性能應用。並引入不同鋰鹽(LiTFSI、LiNO₃ 和 Li₂SO₄)的模擬聚合物電解質 (GPE),提升電解質的機械強度、離子導電性及界面穩定性。
    其中,LiNO₃-GPE 表現出非常優異的性能優勢,在 1C 充電、3C 放電條件下經過 270 次以上的循環仍保有約 79% 的容量,且在 10C 倍率下保持容量衰減相當緩慢的優秀表現。該設計具備良好的水溶性,促進了材料的可回收性,為未來能源技術奠定演算法;使用該 GPE 的 18650 電池可實現 146 Wh kg⁻¹ 的能量密度及 4.1 kW kg⁻¹ 的功率密度,優於商業化的 18650 電池。這些成果為鋰電池的後續回收鏈提供了重要的實力與啟發。

    關鍵詞:水基黏結劑、果膠、聚乙二醇、磷酸鐵鋰、環境友善


    ABSTRACT
    This study focuses on advancing lithium-ion battery technology by developing environmentally friendly materials that enhance both performance and sustainability. A new water-based binder for LiFePO₄ (LFP) cathodes was introduced, combining the natural flexibility of pectin with the mechanical and electrochemical benefits of polyethylene glycol (PEG) through radical copolymerization. The pectin-PEG binder exhibited enhanced self-repair capabilities, superior cycling durability, and significantly improved ionic transport efficiency when compared to traditional PVDF binders. With this binder, the electrodes showed remarkable performance, keeping 150 mAh g⁻¹ with 99% capacity retention after 500 cycles at 1C and 97% capacity retention, or 141 mAh g⁻¹, at 3C. Through cyclic voltammetry, high sweep rates validated its effective ionic transport properties, and galvanostatic intermittent titration showed that the LFP-PP250 electrodes had a higher diffusion coefficient of lithium ions (DLi⁺).
    Further advancements in mechanical strength, ionic conductivity, and interfacial stability were also shown by the creation of quasi-solid lithium-ion batteries using pectin-PEG-based gel polymer electrolytes (GPEs) formulated with different lithium salts, such as LiTFSI, LiNO₃, and Li₂SO₄. Among these, the LiNO₃-based GPE exhibited the best performance, retaining 79% capacity after 270 cycles at 1C/3C rates, with excellent C-rate performance up to 10C. Additionally, this electrolyte design promotes recyclability due to its water solubility and delivers energy densities of 146 Wh kg⁻¹ and 4.1 kW kg⁻¹ in 18650 cells. These findings provide valuable insights for developing eco-friendly lithium-ion batteries with elevated energy densities and lay a strong foundation for further advancement of GPE technology in energy storage systems.
    Keywords: Water-based-Binder, Pectin, PEG, LiFePO4, Eco-friendly

    Table of Contents 中文摘要 vi ABSTRACT vii ACKNOWLEDGEMENT viii Table of Contents x List of Tables xv List of Figures xvii CHAPTER 1 INTRODUCTION 1 1.1 Foreword 1 1.2 Research Motivation 4 1.3 Research Objectives 7 1.3.1 Water-based Pectin/PEG binder 7 1.3.2 Fully Hydrolyzable Pectin/PEG Electrolytes 11   CHAPTER 2 LITERATURE REVIEW AND THEORY 17 2.1 Rechargeable Battery 17 2.2 Lithium Battery 20 2.3 Cathode Material 22 2.3.2 Spinel Structure 26 2.3.3 Olivine Structure 28 2.4 Anode Material 31 2.4.1 Li Metal 31 2.4.2 Graphite 33 2.4.3 Lithium Titanium Oxide (LTO) 34 2.5 Binder 36 2.5.1 Hydrophobic Binders 37 2.5.2 Hydrophilic Binders 37 2.6 Introduction to Electrolytes 41 2.6.1 Liquid Electrolytes (LE) 42 2.6.2 Solid-State Electrolytes (SSE) 49 2.6.3 Gel Polymer Electrolytes (GPEs) 52   CHAPTER 3 METHODS AND ANALYSIS 63 3.1 Experimental Reagents 63 3.2 Process Equipment 65 3.3 Experimental Outline 67 3.4 Experimental Procedures 69 3.4.1 Production process of Pectin-PEG binder for LiFePO4 cathode 69 3.4.2 Production process of Pectin-PEG-Lithium salt membranes 70 3.4.3 Assembling of Lithium half-cell: 72 3.5 Instrumentation and Analytical Techniques 75 3.5.1 Scanning Electron Microscopy (SEM) 75 3.5.2 X-ray Photoelectron Spectroscopy (XPS) 77 3.5.3 Fourier Transform Infrared Spectroscopy (FTIR) 80 3.5.4 Thermogravimetric Analysis (TGA) 82 3.5.5 Differential Scanning Calorimetry (DSC) 84 3.6 Electrochemical measurements 87 3.6.1 Cyclic Voltammetry (CV) 87 3.6.2 Galvanic charge-discharge curve (CCD) 92 3.6.3 Electrochemical Impedance Spectroscopy (EIS) 97   CHAPTER 4 RESULTS AND DISCUSSION 111 4.1 Eco-friendly Binder Enhances LFP Cathode Performance 113 4.1.1 Structural and Chemical Analysis of LFP via FTIR, XPS, and SEM 115 4.1.2 Surface Resistance and Electrochemical Behavior via DRTs 122 4.1.3 CV Analysis of LFP with Different Binders and Performance 127 4.1.4 GITT and b-Value Analysis 132 4.1.5 Performance and Stability of LFP 137 4.1.6 SEM and XPS Analysis of Pectin-PEG Binders in LFP Electrodes 145 4.1.7 Part I: Conclusion: Eco-Friendly Materials Enhance LiFePO₄ Cathode Performance 149 4.2 Performance of Quasi-Solid Li-Ion Cells with Water-Soluble Pectin/PEG Electrolytes 151 4.2.1 Overview of GPE (PPLM) Fabrication and Manufacturing 153 4.2.2 Basic Performance Analysis of PPLMs 155 4.2.3 Electrochemical Analysis of PPLMs (LSV, Arrhenius Plot, Plating/Stripping Behavior, Li⁺ Transference Number) 162 4.2.4 SEM Analysis of Li-Metal Morphology 167 4.2.5 Cells Electrochemical Characterization and Performance of Cells 170 4.2.6 XPS C1s Spectra Analysis of PPLMs 174 4.2.7 Color-Mapped DRT and 3D-Nyquist Analysis of GPEs in Charge/Discharge 180 4.2.8 Part II: Conclusion Quasi-Solid Li-Ion Cells with Water-Soluble Pectin/PEG Electrolytes 183 CHAPTER 5 CONCLUSIONS 187 CHAPTER 6 FUTURE OUTLOOK AND DIRECTIONS 191 CHAPTER 7 Reference 195

    Reference
    [1] Li, L., Dunn, J. B., Zhang, X. X., Gaines, L., Chen, R. J., Wu, F., & Amine, K. (2013). Recovery of metals from spent lithium-ion batteries with organic acids as leaching reagents and environmental assessment. Journal of Power Sources, 233, 180-189.
    [2] Zhang, T., He, Y., Wang, F., Ge, L., Zhu, X., & Li, H. (2014). Chemical and process mineralogical characterizations of spent lithium-ion batteries: An approach by multi-analytical techniques. Waste Manage., 34(6), 1051-1058.
    [3] Grützke, M., Mönnighoff, X., Horsthemke, F., Kraft, V., Winter, M., & Nowak, S. (2015). Extraction of lithium-ion battery electrolytes with liquid and supercritical carbon dioxide and additional solvents. Rsc Advances, 5(54), 43209-43217.
    [4] Hanisch, C., Loellhoeffel, T., Diekmann, J., Markley, K. J., Haselrieder, W., & Kwade, A. (2015). Recycling of lithium-ion batteries: a novel method to separate coating and foil of electrodes. Journal of cleaner production, 108, 301-311.
    [5] Zhang, S., Ren, S., Han, D., Xiao, M., Wang, S., & Meng, Y. (2019). Aqueous sodium alginate as binder: dramatically improving the performance of dilithium terephthalate-based organic lithium ion batteries. Journal of Power Sources, 438, 227007.
    [6] Zhang, S. J., Deng, Y. P., Wu, Q. H., Zhou, Y., Li, J. T., Wu, Z. Y., ... & Sun, S. G. (2018). Sodium‐alginate‐based binders for lithium‐rich cathode materials in lithium‐ion batteries to suppress voltage and capacity fading. ChemElectroChem, 5(9), 1321-1329.
    [7] Schlemmer, W., Selinger, J., Hobisch, M. A., & Spirk, S. (2021). Polysaccharides for sustainable energy storage–A review. Carbohydrate Polymers, 265, 118063.
    [8] Gawkowska, D., Cybulska, J., & Zdunek, A. (2018). Structure-related gelling of pectins and linking with other natural compounds: A review. Polymers, 10(7), 762.
    [9] Wang, F. W., Geri, M., Chen, Y. J., Huang, J. R., McKinley, G. H., & Chen, Y. L. (2022). Rheo-chemistry of gelation in aiyu (fig) jelly. Food Hydrocolloids, 123, 107001.
    [10] Abraham, K. M. (2015). Prospects and limits of energy storage in batteries. The journal of physical chemistry letters, 6(5), 830-844.
    [11] Goodenough, J. B., & Kim, Y. (2010). Challenges for rechargeable Li batteries. Chemistry of materials, 22(3), 587-603.
    [12] Song, J. Y., Wang, Y. Y., & Wan, C. C. (1999). Review of gel-type polymer electrolytes for lithium-ion batteries. Journal of power sources, 77(2), 183-197.
    [13] Saxena, A., Gnanaseelan, N., Kamaraj, S. K., & Caballero-Briones, F. (2020). Polymer electrolytes for lithium ion batteries. In Rechargeable Lithium-Ion Batteries (pp. 260-288). CRC Press.
    [14] Feng, J., Chernova, N. A., Omenya, F., Tong, L., Rastogi, A. C., & Stanley Whittingham, M. (2018). Effect of electrode charge balance on the energy storage performance of hybrid supercapacitor cells based on LiFePO4 as Li-ion battery electrode and activated carbon. Journal of Solid State Electrochemistry, 22, 1063-1078.
    [15] Chen, H., Ling, M., Hencz, L., Ling, H. Y., Li, G., Lin, Z., ... & Zhang, S. (2018). Exploring chemical, mechanical, and electrical functionalities of binders for advanced energy-storage devices. Chemical reviews, 118(18), 8936-8982.
    [16] Aguiló-Aguayo, N., Hubmann, D., Khan, F. U., Arzbacher, S., & Bechtold, T. (2020). Water-based slurries for high-energy LiFePO4 batteries using embroidered current collectors. Scientific reports, 10(1), 5565.
    [17] He, J., Zhong, H., Wang, J., & Zhang, L. (2017). Investigation on xanthan gum as novel water soluble binder for LiFePO4 cathode in lithium-ion batteries. Journal of alloys and compounds, 714, 409-418.
    [18] Zhang, X., Ge, X., Shen, Z., Ma, H., Wang, J., Wang, S., ... & Zhao, Y. (2021). Green water-based binders for LiFePO4/C cathodes in Li-ion batteries: a comparative study. New Journal of Chemistry, 45(22), 9846-9855.
    [19] Paul, T., Chi, P. W., Wu, P. M., & Wu, M. K. (2021). Computation of distribution of relaxation times by Tikhonov regularization for Li ion batteries: usage of L-curve method. Scientific reports, 11(1), 12624.
    [20] Fu, Y., Schuster, J., Petranikova, M., & Ebin, B. (2021). Innovative recycling of organic binders from electric vehicle lithium-ion batteries by supercritical carbon dioxide extraction. Resources, conservation and recycling, 172, 105666.
    [21] Ross, B. J., LeResche, M., Liu, D., Durham, J. L., Dahl, E. U., & Lipson, A. L. (2020). Mitigating the impact of thermal binder removal for direct Li-ion battery recycling. ACS Sustainable Chemistry & Engineering, 8(33), 12511-12515.
    [22] Qiu, L., Shao, Z., Wang, D., Wang, W., Wang, F., & Wang, J. (2014). Enhanced electrochemical properties of LiFePO4 (LFP) cathode using the carboxymethyl cellulose lithium (CMC-Li) as novel binder in lithium-ion battery. Carbohydrate polymers, 111, 588-591.
    [23] Guerfi, A., Kaneko, M., Petitclerc, M., Mori, M., & Zaghib, K. (2007). LiFePO4 water-soluble binder electrode for Li-ion batteries. Journal of Power Sources, 163(2), 1047-1052.
    [24] Peng, X., Chen, X., Tang, C., Weng, S., Hu, X., & Xiang, Y. (2023). Self-healing binder for high-voltage batteries. ACS Applied Materials & Interfaces, 15(17), 21517-21525.
    [25] Zhou, G., Li, F., & Cheng, H. M. (2014). Progress in flexible lithium batteries and future prospects. Energy & Environmental Science, 7(4), 1307-1338.
    [26] Mai, W., Yu, Q., Han, C., Kang, F., & Li, B. (2020). Self‐healing materials for energy‐storage devices. Advanced Functional Materials, 30(24), 1909912.
    [27] Zheng, M., Fu, X., Wang, Y., Reeve, J., Scudiero, L., & Zhong, W. H. (2018). Poly (Vinylidene Fluoride)‐Based Blends as New Binders for Lithium‐Ion Batteries. ChemElectroChem, 5(16), 2288-2294.
    [28] Wright, P. V. (1975). Electrical conductivity in ionic complexes of poly (ethylene oxide). British polymer journal, 7(5), 319-327.
    [29] Xue, Z., He, D., & Xie, X. (2015). Poly (ethylene oxide)-based electrolytes for lithium-ion batteries. Journal of Materials Chemistry A, 3(38), 19218-19253.
    [30] Nam, J., Kim, E., KK, R., Kim, Y., & Kim, T. H. (2020). A conductive self healing polymeric binder using hydrogen bonding for Si anodes in lithium ion batteries. Scientific reports, 10(1), 14966.
    [31] Yoon, D. E., Hwang, C., Kang, N. R., Lee, U., Ahn, D., Kim, J. Y., & Song, H. K. (2016). Dependency of electrochemical performances of silicon lithium-ion batteries on glycosidic linkages of polysaccharide binders. Acs Applied Materials & Interfaces, 8(6), 4042-4047.
    [32] Wu, P. M., Chung, C. Y., Chen, Y. R., Su, Y. H., Chang-Liao, K. S., Chi, P. W., ... & Wu, M. K. (2022). Vibrational and electrochemical studies of pectin—a candidate towards environmental friendly lithium-ion battery development. PNAS nexus, 1(4), pgac127.
    [33] Su, Y. H., Chung, C. Y., Chen, Y. R., Wu, F. Y., Lin, Y. H., Chi, P. W., ... & Wu, M. K. (2023). A green recyclable Li3VO4-pectin electrode exhibiting pseudocapacitive effect as an advanced anode for lithium-ion battery. Journal of Energy Storage, 72, 108454.
    [34] An, H., Yang, Y., Zhou, Z., Bo, Y., Wang, Y., He, Y., ... & Qin, J. (2021). Pectin-based injectable and biodegradable self-healing hydrogels for enhanced synergistic anticancer therapy. Acta Biomaterialia, 131, 149-161.

    [35] Zhou, Z., Wang, Z., Liu, X., Zhao, Z., An, H., Wang, Y., ... & Qin, J. (2022). Pectin-based self-healing hydrogel through acylhydrazone connection for controlled drug release and enhanced tumor therapy. Journal of Drug Delivery Science and Technology, 70, 103210.
    [36] Nam, J., Kim, E., KK, R., Kim, Y., & Kim, T. H. (2020). A conductive self healing polymeric binder using hydrogen bonding for Si anodes in lithium ion batteries. Scientific reports, 10(1), 14966.
    [37] Ryu, J., Kim, S., Kim, J., Park, S., Lee, S., Yoo, S., ... & Park, S. (2020). Room‐temperature crosslinkable natural polymer binder for high‐rate and stable silicon anodes. Advanced Functional Materials, 30(9), 1908433.
    [38] Zhang, G., Yang, Y., Chen, Y., Huang, J., Zhang, T., Zeng, H., ... & Deng, Y. (2018). A quadruple‐hydrogen‐bonded supramolecular binder for high‐performance silicon anodes in lithium‐ion batteries. Small, 14(29), 1801189.
    [39] Xu, Z., Yang, J., Zhang, T., Nuli, Y., Wang, J., & Hirano, S. I. (2018). Silicon microparticle anodes with self-healing multiple network binder. Joule, 2(5), 950-961.
    [40] Gireaud, L., Grugeon, S., Laruelle, S., Yrieix, B., & Tarascon, J. M. (2006). Lithium metal stripping/plating mechanisms studies: A metallurgical approach. Electrochemistry communications, 8(10), 1639-1649.
    [41] Fu, S., Zuo, L. L., Zhou, P. S., Liu, X. J., Ma, Q., Chen, M. J., ... & Deng, Q. (2021). Recent advancements of functional gel polymer electrolytes for rechargeable lithium–metal batteries. Materials Chemistry Frontiers, 5(14), 5211-5232.
    [42] Chattopadhyay, J., Pathak, T. S., & Santos, D. M. (2023). Applications of polymer electrolytes in lithium-ion batteries: a review. Polymers, 15(19), 3907.
    [43] Zhao, L., Fu, J., Du, Z., Jia, X., Qu, Y., Yu, F., ... & Chen, Y. (2020). High-strength and flexible cellulose/PEG based gel polymer electrolyte with high performance for lithium ion batteries. Journal of Membrane Science, 593, 117428.
    [44] Xu, Z., Guo, D., Liu, Z., Wang, Z., Gu, Z., Wang, D., & Yao, X. (2022). Cellulose Acetate‐Based High‐Electrolyte‐Uptake Gel Polymer Electrolyte for Semi‐Solid‐State Lithium‐Oxygen Batteries with Long‐Cycling Stability. Chemistry–An Asian Journal, 17(21), e202200712.
    [45] Wang, Z., Yang, K., Song, Y., Lin, H., Li, K., Cui, Y., ... & Pan, F. (2020). Polymer matrix mediated solvation of LiNO3 in carbonate electrolytes for quasi-solid high-voltage lithium metal batteries. Nano Research, 13, 2431-2437.
    [46] Chen, Y. R., Chen, L. Y., Chung, C. Y., Su, Y. H., Wu, F. Y., Hsu, T. M., ... & Wu, M. K. (2024). Enhanced electrochemical performance of a LiFePO4 cathode with an environmentally friendly pectin/polyethylene glycol binder. Journal of Power Sources, 613, 234861.
    [47] Battery University. (n.d.). Comparison table of secondary batteries. Battery University. Retrieved [Aug 2024], from https://batteryuniversity.com/article/bu-107-comparison-table-of-secondary-batteries
    [48] Scrosati, B., & Garche, J. (2010). Lithium batteries: Status, prospects and future. Journal of power sources, 195(9), 2419-2430.Scrosati, B. (1992). Lithium rocking chair batteries: an old concept?. Journal of The Electrochemical Society, 139(10), 2776.
    [49] Khalyutin, S., Starostin, I., & Agafonkina, I. (2023). Generalized method of mathematical prototyping of energy processes for digital twins development. Energies, 16(4), 1933.
    [50] Megahed, S., & Ebner, W. (1995). Lithium-ion battery for electronic applications. Journal of Power Sources, 54(1), 155-162.
    [51] Deng, C., Li, X., Chen, R., Ye, K., Lipton, J., Maclean, S. A., ... & Weng, G. M. (2023). Recent advances in rocking chair batteries and beyond. Energy Storage Materials, 60, 102820.
    [52] Tarascon, J. M., & Armand, M. (2001). Issues and challenges facing rechargeable lithium batteries. nature, 414(6861), 359-367.
    [53] Tang, Z. K., Xue, Y. F., Teobaldi, G., & Liu, L. M. (2020). The oxygen vacancy in Li-ion battery cathode materials. Nanoscale horizons, 5(11), 1453-1466.
    [54] Aravindan, V., Gnanaraj, J., Lee, Y. S., & Madhavi, S. (2013). LiMnPO4–A next generation cathode material for lithium-ion batteries. Journal of Materials Chemistry A, 1(11), 3518-3539.
    [55] Czyżyk, M. T., Potze, R., & Sawatzky, G. A. (1992). Band-theory description of high-energy spectroscopy and the electronic structure of LiCoO2. Physical Review B, 46(7), 3729.
    [56] Tang, D., Liu, D., Liu, Y., Yang, Z., & Chen, L. (2014). Investigation on the electrochemical activation process of Li1.20Ni0.32Co0.004Mn0.476O2. Progress in Natural Science: Materials International, 24(4), 388-396.
    [57] Li, J., Lin, C., Weng, M., Qiu, Y., Chen, P., Yang, K., ... & Pan, F. (2021). Structural origin of the high-voltage instability of lithium cobalt oxide. Nature nanotechnology, 16(5), 599-605.
    [58] Thackeray, M. M., David, W. I., Bruce, P. G., & Goodenough, J. B. (1983). Lithium insertion into manganese spinels. Materials research bulletin, 18(4), 461-472.
    [59] Zhang, T., Li, D., Tao, Z., & Chen, J. (2013). Understanding electrode materials of rechargeable lithium batteries via DFT calculations. Progress in Natural Science: Materials International, 23(3), 256-272.
    [60] Shin, Y., & Manthiram, A. (2004). Factors influencing the capacity fade of spinel lithium manganese oxides. Journal of the Electrochemical Society, 151(2), A204.
    [61] Jung, S. K., Gwon, H., Hong, J., Park, K. Y., Seo, D. H., Kim, H., ... & Kang, K. (2014). Understanding the degradation mechanisms of LiNi0. 5Co0. 2Mn0. 3O2 cathode material in lithium ion batteries. Advanced Energy Materials, 4(1), 1300787.
    [62] Fan, Q., Yang, S., Liu, J., Liu, H., Lin, K., Liu, R., ... & Yang, Y. (2019). Mixed-conducting interlayer boosting the electrochemical performance of Ni-rich layered oxide cathode materials for lithium ion batteries. Journal of Power Sources, 421, 91-99.
    [63] Chung, S. Y., Bloking, J. T., & Chiang, Y. M. (2002). Electronically conductive phospho-olivines as lithium storage electrodes. Nature materials, 1(2), 123-128.
    [64] Manickam, M., Minato, K., & Takata, M. (2003). Effect of trivalent catión on the niobium redox couple in various transition metal phosphates. J. Electrochem. Soc, 150, A1085.
    [65] Chen, S. P., Lv, D., Chen, J., Zhang, Y. H., & Shi, F. N. (2022). Review on defects and modification methods of LiFePO4 cathode material for lithium-ion batteries. Energy & Fuels, 36(3), 1232-1251.
    [66] Zhou, Y., Zhang, X., Ding, Y., Zhang, L., & Yu, G. (2020). Reversible deposition of lithium particles enabled by ultraconformal and stretchable graphene film for lithium metal batteries. Advanced Materials, 32(48), 2005763.
    [67] Fan, J., & Tan, S. (2006). Studies on charging lithium-ion cells at low temperatures. Journal of The Electrochemical Society, 153(6), A1081.
    [68] Owen, J. R. (1997). Rechargeable lithium batteries. Chemical Society Reviews, 26(4), 259-267.
    [69] Sandhya, C. P., John, B., & Gouri, C. (2014). Lithium titanate as anode material for lithium-ion cells: a review. Ionics, 20, 601-620.
    [70] Jansen, A. N., Kahaian, A. J., Kepler, K. D., Nelson, P. A., Amine, K., Dees, D. W., ... & Thackeray, M. M. (1999). Development of a high-power lithium-ion battery. Journal of power sources, 81, 902-905.
    [71] Mancini, M., Nobili, F., Tossici, R., Wohlfahrt-Mehrens, M., & Marassi, R. (2011). High performance, environmentally friendly and low cost anodes for lithium-ion battery based on TiO2 anatase and water soluble binder carboxymethyl cellulose. Journal of Power Sources, 196(22), 9665-9671.
    [72] Park, Y. S., Oh, E. S., & Lee, S. M. (2014). Effect of polymeric binder type on the thermal stability and tolerance to roll-pressing of spherical natural graphite anodes for Li-ion batteries. Journal of Power Sources, 248, 1191-1196.
    [73] Pohjalainen, E., Räsänen, S., Jokinen, M., Yliniemi, K., Worsley, D. A., Kuusivaara, J., ... & Karppinen, M. (2013). Water soluble binder for fabrication of Li4Ti5O12 electrodes. Journal of power sources, 226, 134-139.
    [74] Chen, Z., Christensen, L., & Dahn, J. R. (2003). Large-volume-change electrodes for Li-ion batteries of amorphous alloy particles held by elastomeric tethers. Electrochemistry communications, 5(11), 919-923.
    [75] Kovalenko, I., Zdyrko, B., Magasinski, A., Hertzberg, B., Milicev, Z., Burtovyy, R., ... & Yushin, G. (2011). A major constituent of brown algae for use in high-capacity Li-ion batteries. Science, 334(6052), 75-79.
    [76] Xu, J., Chou, S. L., Gu, Q. F., Liu, H. K., & Dou, S. X. (2013). The effect of different binders on electrochemical properties of LiNi1/3Mn1/3Co1/3O2 cathode material in lithium ion batteries. Journal of Power Sources, 225, 172-178.
    [77] Du Pasquier, A., Disma, F., Bowmer, T., Gozdz, A. S., Amatucci, G., & Tarascon, J. M. (1998). Differential scanning calorimetry study of the reactivity of carbon anodes in plastic Li‐ion batteries. Journal of the Electrochemical Society, 145(2), 472.
    [78] Wang, W. L., Jin, E. M., & Gu, H. B. (2013). Impacts of different polymer binders on electrochemical properties of LiFePO4 cathode. Applied surface science, 282, 444-449.
    [79] Zhang, S. S., Xu, K., & Jow, T. R. (2004). Evaluation on a water-based binder for the graphite anode of Li-ion batteries. Journal of power sources, 138(1-2), 226-231.
    [80] Peng, X., Chen, X., Tang, C., Weng, S., Hu, X., & Xiang, Y. (2023). Self-healing binder for high-voltage batteries. ACS Applied Materials & Interfaces, 15(17), 21517-21525.
    [81] Zhou, G., Li, F., & Cheng, H. M. (2014). Progress in flexible lithium batteries and future prospects. Energy & Environmental Science, 7(4), 1307-1338.
    [82] Mai, W., Yu, Q., Han, C., Kang, F., & Li, B. (2020). Self‐healing materials for energy‐storage devices. Advanced Functional Materials, 30(24), 1909912.
    [83] Zheng, M., Fu, X., Wang, Y., Reeve, J., Scudiero, L., & Zhong, W. H. (2018). Poly (Vinylidene Fluoride)‐Based Blends as New Binders for Lithium‐Ion Batteries. ChemElectroChem, 5(16), 2288-2294.
    [84] Wright, P. V. "Electrical Conductivity in Ionic Complexes of Poly (Ethylene Oxide)." Br. Polym. J., vol. 7, no. 5, 1975, pp. 319-327.
    [85] Xue, Z., "Poly (Ethylene Oxide)-Based Electrolytes for Lithium-Ion Batteries." J. Mater. Chem. A, vol. 3, no. 38, 2015, pp. 19218-19253.
    [86] Xu, K. (2004). Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chemical reviews, 104(10), 4303-4418.
    [87] Dias, F. B., Plomp, L., & Veldhuis, J. B. (2000). Trends in polymer electrolytes for secondary lithium batteries. Journal of Power Sources, 88(2), 169-191.
    [88] Zhang, S. S. (2007). A review on the separators of liquid electrolyte Li-ion batteries. Journal of power sources, 164(1), 351-364.
    [89] Fry, A. J. (1989). Synthetic organic electrochemistry. John Wiley & Sons.
    [90] Chen, C., Liang, Q., Wang, G., Liu, D., & Xiong, X. (2022). Grain‐boundary‐rich artificial SEI layer for high‐rate lithium metal anodes. Advanced Functional Materials, 32(4), 2107249.
    [91] Liu, X., Liu, J., Qian, T., Chen, H., & Yan, C. (2020). Novel organophosphate‐derived dual‐layered interface enabling air‐stable and dendrite‐free lithium metal anode. Advanced Materials, 32(2), 1902724.
    [92] Lu, P., & Harris, S. J. (2011). Lithium transport within the solid electrolyte interphase. Electrochemistry Communications, 13(10), 1035-1037.
    [93] Aurbach, D., Zinigrad, E., Cohen, Y., & Teller, H. (2002). A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions. Solid state ionics, 148(3-4), 405-416.
    [94] Ding, F., Xu, W., Chen, X., Zhang, J., Engelhard, M. H., Zhang, Y., ... & Zhang, J. G. (2013). Effects of carbonate solvents and lithium salts on morphology and coulombic efficiency of lithium electrode. Journal of The Electrochemical Society, 160(10), A1894.
    [95] Jiao, S., Ren, X., Cao, R., Engelhard, M. H., Liu, Y., Hu, D., ... & Xu, W. (2018). Stable cycling of high-voltage lithium metal batteries in ether electrolytes. Nature Energy, 3(9), 739-746.
    [96] Yu, H., Zhao, J., Ben, L., Zhan, Y., Wu, Y., & Huang, X. (2017). Dendrite-free lithium deposition with self-aligned columnar structure in a carbonate–ether mixed electrolyte. ACS Energy Letters, 2(6), 1296-1302.
    [97] Du, P., Lu, J., Lau, K. C., Luo, X., Bareño, J., Zhang, X., ... & Amine, K. (2013). Compatibility of lithium salts with solvent of the non-aqueous electrolyte in Li–O 2 batteries. Physical Chemistry Chemical Physics, 15(15), 5572-5581.
    [98] Nakajima, T., Mori, M., Gupta, V., Ohzawa, Y., & Iwata, H. (2002). Effect of fluoride additives on the corrosion of aluminum for lithium ion batteries. Solid State Sciences, 4(11-12), 1385-1394.
    [99] Verma, P., Maire, P., & Novák, P. (2010). A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries. Electrochimica Acta, 55(22), 6332-6341.
    [100] Yang, C. R., Song, J. Y., Wang, Y. Y., & Wan, C. C. (2000). Impedance spectroscopic study for the initiation of passive film on carbon electrodes in lithium ion batteries. Journal of applied electrochemistry, 30, 29-34.
    [101] Ue, M., & Mori, S. (1995). Mobility and ionic association of lithium salts in a propylene carbonate‐ethyl methyl carbonate mixed solvent. Journal of the Electrochemical Society, 142(8), 2577.
    [102] Aurbach, D., Ein‐Ely, Y., & Zaban, A. (1994). The surface chemistry of lithium electrodes in alkyl carbonate solutions. Journal of The Electrochemical Society, 141(1), L1.
    [103] Manthiram, A., Yu, X., & Wang, S. (2017). Lithium battery chemistries enabled by solid-state electrolytes. Nature Reviews Materials, 2(4), 1-16.
    [104] Matsuyama, T., Sakuda, A., Hayashi, A., Togawa, Y., Mori, S., & Tatsumisago, M. (2013). Electrochemical properties of all-solid-state lithium batteries with amorphous titanium sulfide electrodes prepared by mechanical milling. Journal of Solid State Electrochemistry, 17, 2697-2701.
    [105] Inaguma, Y., Liquan, C., Itoh, M., Nakamura, T., Uchida, T., Ikuta, H., & Wakihara, M. (1993). High ionic conductivity in lithium lanthanum titanate. Solid State Communications, 86(10), 689-693.
    [106] Minami, K., Hayashi, A., Ujiie, S., & Tatsumisago, M. (2011). Electrical and electrochemical properties of glass–ceramic electrolytes in the systems Li2S–P2S5–P2S3 and Li2S–P2S5–P2O5. Solid State Ionics, 192(1), 122-125.
    [107] Krawiec, W., Scanlon Jr, L. G., Fellner, J. P., Vaia, R. A., Vasudevan, S., & Giannelis, E. P. (1995). Polymer nanocomposites: a new strategy for synthesizing solid electrolytes for rechargeable lithium batteries. Journal of Power Sources, 54(2), 310-315.
    [108] Cho, Y. G., Hwang, C., Cheong, D. S., Kim, Y. S., & Song, H. K. (2019). Gel/solid polymer electrolytes characterized by in situ gelation or polymerization for electrochemical energy systems. Advanced materials, 31(20), 1804909.
    [109] Feuillade, G., & Perche, P. (1975). Ion-conductive macromolecular gels and membranes for solid lithium cells. Journal of Applied Electrochemistry, 5, 63-69.
    [110] Nakamura, T., Petzow, G., & Gauckler, L. J. (1979). Stability of the perovskite phase LaBO3 (B= V, Cr, Mn, Fe, Co, Ni) in reducing atmosphere I. Experimental results. Materials Research Bulletin, 14(5), 649-659.
    [111] Berthier, C., Gorecki, W., Minier, M., Armand, M. B., Chabagno, J. M., & Rigaud, P. (1983). Microscopic investigation of ionic conductivity in alkali metal salts-poly (ethylene oxide) adducts. Solid State Ionics, 11(1), 91-95.
    [112] Stephan, A. M. (2006). Review on gel polymer electrolytes for lithium batteries. European polymer journal, 42(1), 21-42.

    [113] Sun, X. G., Reeder, C. L., & Kerr, J. B. (2004). Synthesis and characterization of network type single ion conductors. Macromolecules, 37(6), 2219-2227.
    [114] Park, C. H., Sun, Y. K., & Kim, D. W. (2004). Blended polymer electrolytes based on poly (lithium 4-styrene sulfonate) for the rechargeable lithium polymer batteries. Electrochimica acta, 50(2-3), 375-378.
    [115] Benrabah, D., Sylla, S., Sanchez, J. Y., & Armand, M. (1995). Cationic conductivity in poly (oxyethylene oxide) networks. Journal of power sources, 54(2), 456-460.
    [116] Alloin, F., Benrabah, D., & Sanchez, J. Y. (1997). Comparative ion transport in several polymer electrolytes. Journal of power sources, 68(2), 372-376.
    [117] Na, R., Huo, G., Zhang, S., Huo, P., Du, Y., Luan, J., ... & Wang, G. (2016). A novel poly (ethylene glycol)–grafted poly (arylene ether ketone) blend micro-porous polymer electrolyte for solid-state electric double layer capacitors formed by incorporating a chitosan-based LiClO 4 gel electrolyte. Journal of Materials Chemistry A, 4(46), 18116-18127.
    [118] Na, R., Huo, P., Zhang, X., Zhang, S., Du, Y., Zhu, K., ... & Wang, G. (2016). A flexible solid-state supercapacitor based on a poly (aryl ether ketone)–poly (ethylene glycol) copolymer solid polymer electrolyte for high temperature applications. RSC advances, 6(69), 65186-65195.
    [119] Shim, J., Kim, D. G., Lee, J. H., Baik, J. H., & Lee, J. C. (2014). Synthesis and properties of organic/inorganic hybrid branched-graft copolymers and their application to solid-state electrolytes for high-temperature lithium-ion batteries. Polymer Chemistry, 5(10), 3432-3442.
    [120] Huang, C. W., Wu, C. A., Hou, S. S., Kuo, P. L., Hsieh, C. T., & Teng, H. (2012). Gel electrolyte derived from poly (ethylene glycol) blending poly (acrylonitrile) applicable to roll‐to‐roll assembly of electric double layer capacitors. Advanced Functional Materials, 22(22), 4677-4685.
    [121] Na, R., Su, C. W., Su, Y. H., Chen, Y. C., Chen, Y. M., Wang, G., & Teng, H. (2017). Solvent-free synthesis of an ionic liquid integrated ether-abundant polymer as a solid electrolyte for flexible electric double-layer capacitors. Journal of Materials Chemistry A, 5(37), 19703-19713.
    [122] Lu, Q., He, Y. B., Yu, Q., Li, B., Kaneti, Y. V., Yao, Y., ... & Yang, Q. H. (2017). Dendrite-Free, High-Rate, Long-Life Lithium Metal Batteries with a 3D Cross-Linked Network Polymer Electrolyte. Advanced Materials (Deerfield Beach, Fla.), 29(13).
    [123] Stevie, F. A., & Donley, C. L. (2020). Introduction to x-ray photoelectron spectroscopy. Journal of Vacuum Science & Technology A, 38(6).
    [124] Griffiths, P. R. (1983). Fourier transform infrared spectrometry. Science, 222(4621), 297-302.
    [125] Nicholson, R. S., & Shain, I. (1964). Theory of stationary electrode polarography. Single scan and cyclic methods applied to reversible, irreversible, and kinetic systems. Analytical chemistry, 36(4), 706-723.
    [126] Pu, X., Zhao, D., Fu, C., Chen, Z., Cao, S., Wang, C., & Cao, Y. (2021). Understanding and calibration of charge storage mechanism in cyclic voltammetry curves. Angewandte Chemie International Edition, 60(39), 21310-21318.
    [127] Zhang, Y., Luo, W., Wang, C., Li, Y., Chen, C., Song, J., ... & Hu, L. (2017). High-capacity, low-tortuosity, and channel-guided lithium metal anode. Proceedings of the National Academy of Sciences, 114(14), 3584-3589.
    [128] Hsia, B. (2013). Materials synthesis and characterization for micro-supercapacitor applications. University of California, Berkeley.
    [129] Winter, M., & Brodd, R. J. (2004). What are batteries, fuel cells, and supercapacitors?. Chemical reviews, 104(10), 4245-4270.
    [130] Bertok, T., Lorencova, L., Chocholova, E., Jane, E., Vikartovska, A., Kasak, P., & Tkac, J. (2019). Electrochemical impedance spectroscopy based biosensors: Mechanistic principles, analytical examples and challenges towards commercialization for assays of protein cancer biomarkers. ChemElectroChem, 6(4), 989-1003.
    [131] Bertok, T., Lorencova, L., Chocholova, E., Jane, E., Vikartovska, A., Kasak, P., & Tkac, J. (2019). Electrochemical impedance spectroscopy based biosensors: Mechanistic principles, analytical examples and challenges towards commercialization for assays of protein cancer biomarkers. ChemElectroChem, 6(4), 989-1003.
    [132] Huang, J., & Zhang, J. (2016). Theory of impedance response of porous electrodes: simplifications, inhomogeneities, non-stationarities and applications. Journal of the Electrochemical Society, 163(9), A1983.
    [133] Huang, J. (2018). Diffusion impedance of electroactive materials, electrolytic solutions and porous electrodes: Warburg impedance and beyond. Electrochimica Acta, 281, 170-188.
    [134] Xiong, X., Zhi, R., Zhou, Q., Yan, W., Zhu, Y., Chen, Y., ... & Wu, Y. (2021). A binary PMMA/PVDF blend film modified substrate enables a superior lithium metal anode for lithium batteries. Materials Advances, 2(13), 4240-4245.
    [135] Rana, J., Stan, M., Kloepsch, R., Li, J., Schumacher, G., Welter, E., ... & Winter, M. (2014). Structural changes in Li2MnO3 cathode material for Li‐Ion batteries. Advanced Energy Materials, 4(5), 1300998.
    [136] Zou, L., He, Y., Liu, Z., Jia, H., Zhu, J., Zheng, J., ... & Wang, C. (2020). Unlocking the passivation nature of the cathode–air interfacial reactions in lithium ion batteries. Nature communications, 11(1), 3204.
    [137] Illig, J., Ender, M., Chrobak, T., Schmidt, J. P., Klotz, D., & Ivers-Tiffée, E. (2012). Separation of charge transfer and contact resistance in LiFePO4-cathodes by impedance modeling. Journal of The Electrochemical Society, 159(7), A952.
    [138] Schmidt, J. P., Chrobak, T., Ender, M., Illig, J., Klotz, D., & Ivers-Tiffée, E. (2011). Studies on LiFePO4 as cathode material using impedance spectroscopy. Journal of Power Sources, 196(12), 5342-5348.
    [139] Shim, J., & Striebel, K. A. (2003). Cycling performance of low-cost lithium ion batteries with natural graphite and LiFePO4. Journal of Power Sources, 119, 955-958.
    [140] Lingappan, N., Kong, L., & Pecht, M. (2021). The significance of aqueous binders in lithium-ion batteries. Renewable and Sustainable Energy Reviews, 147, 111227.
    [141] Lux, S. F., Schappacher, F., Balducci, A., Passerini, S., & Winter, M. (2010). Low cost, environmentally benign binders for lithium-ion batteries. Journal of the Electrochemical Society, 157(3), A320.
    [142] Wang, X., Chen, C., Wu, S., Zheng, H., Chen, Y., Liu, H., ... & Duan, H. (2022). High‐Rate and Long‐Life Au Nanorods/LiFePO4 Composite Cathode for Lithium‐Ion Batteries. Energy Technology, 10(3), 2100841.
    [143] Wu, S., Zheng, H., Wang, X., Zhang, N., Cheng, W., Fu, B., ... & Duan, H. (2022). High-capacity, low-tortuosity LiFePO4-Based composite cathode enabled by self-supporting structure combined with laser drilling technology. Chemical Engineering Journal, 430, 132810.
    [144] Bai, L., & Conway, B. E. (1991). AC impedance of faradaic reactions involving electrosorbed intermediates: Examination of conditions leading to pseudoinductive behavior represented in three‐dimensional impedance spectroscopy diagrams. Journal of the Electrochemical Society, 138(10), 2897.
    [145] Bai, L., & Conway, B. E. (1993). Three-dimensional impedance spectroscopy diagrams for processes involving electrosorbed intermediates, introducing the third electrode-potential variable—Examination of conditions leading to pseudo-inductive behavior. Electrochimica acta, 38(14), 1803-1815.
    [146] Orikasa, Y., Maeda, T., Koyama, Y., Murayama, H., Fukuda, K., Tanida, H., ... & Ogumi, Z. (2013). Transient phase change in two phase reaction between LiFePO4 and FePO4 under battery operation. Chemistry of Materials, 25(7), 1032-1039.
    [147] Tang, Q., Zhou, Z., & Shen, P. (2012). Are MXenes promising anode materials for Li ion batteries? Computational studies on electronic properties and Li storage capability of Ti3C2 and Ti3C2X2 (X= F, OH) monolayer. Journal of the American Chemical Society, 134(40), 16909-16916.
    [148] Ko, J. S., Lai, C. H., Long, J. W., Rolison, D. R., Dunn, B., & Nelson Weker, J. (2020). Differentiating double-layer, psuedocapacitance, and battery-like mechanisms by analyzing impedance measurements in three dimensions. ACS applied materials & interfaces, 12(12), 14071-14078.
    [149] Schichlein, H., Müller, A. C., Voigts, M., Krügel, A., & Ivers-Tiffée, E. (2002). Deconvolution of electrochemical impedance spectra for the identification of electrode reaction mechanisms in solid oxide fuel cells. Journal of Applied Electrochemistry, 32, 875-882.
    [150] Wan, T. H., Saccoccio, M., Chen, C., & Ciucci, F. (2015). Influence of the discretization methods on the distribution of relaxation times deconvolution: implementing radial basis functions with DRTtools. Electrochimica Acta, 184, 483-499.
    [151] Ming, J., Li, M., Kumar, P., Lu, A. Y., Wahyudi, W., & Li, L. J. (2016). Redox species-based electrolytes for advanced rechargeable lithium ion batteries. ACS Energy Letters, 1(3), 529-534.
    [152] Assegie, A. A., Cheng, J. H., Kuo, L. M., Su, W. N., & Hwang, B. J. (2018). Polyethylene oxide film coating enhances lithium cycling efficiency of an anode-free lithium-metal battery. Nanoscale, 10(13), 6125-6138.
    [153] Bresser, D., Buchholz, D., Moretti, A., Varzi, A., & Passerini, S. (2018). Alternative binders for sustainable electrochemical energy storage–the transition to aqueous electrode processing and bio-derived polymers. Energy & Environmental Science, 11(11), 3096-3127.
    [154] Li, N., Ye, Q., Zhang, K., Yan, H., Shen, C., Wei, B., & Xie, K. (2019). Normalized lithium growth from the nucleation stage for dendrite‐free lithium metal anodes. Angewandte Chemie, 131(50), 18414-18419.
    [155] Rui, X. H., Jin, Y., Feng, X. Y., Zhang, L. C., & Chen, C. H. (2011). A comparative study on the low-temperature performance of LiFePO4/C and Li3V2 (PO4) 3/C cathodes for lithium-ion batteries. Journal of Power Sources, 196(4), 2109-2114.
    [156] Weppner, W. R. A. H., & Huggins, R. A. (1977). Determination of the kinetic parameters of mixed‐conducting electrodes and application to the system Li3Sb. Journal of The Electrochemical Society, 124(10), 1569.
    [157] Choi, C., Ashby, D. S., Butts, D. M., DeBlock, R. H., Wei, Q., Lau, J., & Dunn, B. (2020). Achieving high energy density and high power density with pseudocapacitive materials. Nature Reviews Materials, 5(1), 5-19.
    [158] Yi, D., Cui, X., Li, N., Zhang, L., & Yang, D. (2020). Enhancement of electrochemical performance of LiFePO4@ C by Ga coating. ACS omega, 5(17), 9752-9758.
    [159] Ye, C., Wang, L., Tan, Q., Ma, Y., Tong, Q., & Weng, J. (2023). Conducting Polyacrylamide–Polyaniline Polymers as Water‐Soluble Binder in LiFePO4 Cathode for Lithium‐Ion Batteries. Energy Technology, 11(9), 2300464.
    [160] Kim, G. T., Jeong, S. S., Joost, M., Rocca, E., Winter, M., Passerini, S., & Balducci, A. (2011). Use of natural binders and ionic liquid electrolytes for greener and safer lithium-ion batteries. Journal of Power Sources, 196(4), 2187-2194.
    [161] Cai, Z. P., Liang, Y., Li, W. S., Xing, L. D., & Liao, Y. H. (2009). Preparation and performances of LiFePO4 cathode in aqueous solvent with polyacrylic acid as a binder. Journal of Power Sources, 189(1), 547-551.
    [162] Li, S., Tsutsumi, S., Shironita, S., & Umeda, M. (2022). Verification of peak attribution in differential capacity profile by varying the electrode capacity balance in three-electrode Li-ion laminate cells. Electrochemistry, 90(6), 067004-067004.
    [163] Yu, F., Huang, Y., Zou, Z., Zhang, S., Geng, J., Liang, F., ... & Nong, J. (2023). Preparation of cathode materials with excellent electrochemical performance by composite of few-layer MXene and LiFePO4. Journal of Materials Science: Materials in Electronics, 34(34), 2220.
    [164] Munaoka, T., Yan, X., Lopez, J., To, J. W., Park, J., Tok, J. B. H., ... & Bao, Z. (2018). Ionically conductive self‐healing binder for low cost Si microparticles anodes in Li‐ion batteries. Advanced Energy Materials, 8(14), 1703138.
    [165] Li, Z., He, L., Zhu, Y., & Yang, C. (2020). A green and cost-effective method for production of LiOH from spent LiFePO4. ACS Sustainable Chemistry & Engineering, 8(42), 15915-15926.
    [166] Zhao, Z., Ye, W., Zhang, F., Pan, Y., Zhuo, Z., Zou, F., ... & Li, Q. (2023). Revealing the effect of LiOH on forming a SEI using a Co magnetic “probe”. Chemical Science, 14(43), 12219-12230.
    [167] Zhao, L., Sun, Z., Zhang, H., Li, Y., Mo, Y., Yu, F., & Chen, Y. (2020). An environment-friendly crosslinked binder endowing LiFePO 4 electrode with structural integrity and long cycle life performance. RSC advances, 10(49), 29362-29372.
    [168] Sun, J., Ren, X., Li, Z., Tian, W., Zheng, Y., Wang, L., & Liang, G. (2019). Effect of poly (acrylic acid)/poly (vinyl alcohol) blending binder on electrochemical performance for lithium iron phosphate cathodes. Journal of Alloys and Compounds, 783, 379-386.
    [169] Weng, J., & Peng, L. (2022). Improving the electrochemical performance of LiFePO4 cathode with novel water-soluble binders. Materials Chemistry and Physics, 290, 126530.
    [170] Ye, C., Wang, L., Tan, Q., Ma, Y., Tong, Q., & Weng, J. (2023). Conducting Polyacrylamide–Polyaniline Polymers as Water‐Soluble Binder in LiFePO4 Cathode for Lithium‐Ion Batteries. Energy Technology, 11(9), 2300464.
    [171] Li, C. C., & Lin, Y. S. (2012). Interactions between organic additives and active powders in water-based lithium iron phosphate electrode slurries. Journal of power sources, 220, 413-421.
    [172] Nishijima, M., Ootani, T., Kamimura, Y., Sueki, T., Esaki, S., Murai, S., ... & Tanaka, I. (2014). Accelerated discovery of cathode materials with prolonged cycle life for lithium-ion battery. Nature communications, 5(1), 4553.
    [173] Chung, C. Y., Chen, W. M., Chen, Y. R., Chen, L. Y., Su, Y. H., Chi, P. W., ... & Wu, M. K. (2024). Enhanced fast charging capabilities in natural graphite/iron cross-linked pectin electrodes for lithium-ion batteries. Materials Advances, 5(17), 6820-6829.
    [174] Xie, K., Yu, S., Wang, P., & Chen, P. (2021). Polyethylene Terephthalate‐Based Materials for Lithium‐Ion Battery Separator Applications: A Review Based on Knowledge Domain Analysis. International Journal of Polymer Science, 2021(1), 6694105.
    [175] Liang, S., Yan, W., Wu, X., Zhang, Y., Zhu, Y., Wang, H., & Wu, Y. (2018). Gel polymer electrolytes for lithium ion batteries: Fabrication, characterization and performance. Solid State Ionics, 318, 2-18.
    [176] DeLongchamp, D. M., & Hammond, P. T. (2004). Highly ion conductive poly (ethylene oxide)-based solid polymer electrolytes from hydrogen bonding layer-by-layer assembly. Langmuir, 20(13), 5403-5411.
    [177] Fan, L., Nan, C. W., & Zhao, S. (2003). Effect of modified SiO2 on the properties of PEO-based polymer electrolytes. Solid State Ionics, 164(1-2), 81-86.
    [178] Genier, F. S., Burdin, C. V., Biria, S., & Hosein, I. D. (2019). A novel calcium-ion solid polymer electrolyte based on crosslinked poly (ethylene glycol) diacrylate. Journal of Power Sources, 414, 302-307.
    [179] Yang, Z., Cai, J., Shen, Z., Bian, J., Chen, J., Xu, Y., ... & Bi, S. (2024). Effect of LiTFSI Solvation on Ionic Conductivity of Polyester-Based Solid Electrolytes. Macromolecules, 57(9), 4460-4470.
    [180] Xiao, X., Wu, W., & Huang, X. (2010). A multi-scale approach for the stress analysis of polymeric separators in a lithium-ion battery. Journal of power sources, 195(22), 7649-7660.
    [181] Zhu, Y., Wang, F., Liu, L., Xiao, S., Chang, Z., & Wu, Y. (2013). Composite of a nonwoven fabric with poly (vinylidene fluoride) as a gel membrane of high safety for lithium ion battery. Energy & Environmental Science, 6(2), 618-624.
    [182] Zhu, Y., Yang, Y., Fu, L., & Wu, Y. (2017). A porous gel-type composite membrane reinforced by nonwoven: promising polymer electrolyte with high performance for sodium ion batteries. Electrochimica Acta, 224, 405-411.
    [183] Locatelli, E., & Comes Franchini, M. (2012). Biodegradable PLGA-b-PEG polymeric nanoparticles: synthesis, properties, and nanomedical applications as drug delivery system. Journal of Nanoparticle Research, 14, 1-17.
    [184] Mohammad, M. B., Brooks, G. A., & Rhamdhani, M. A. (2018). Premelting, melting, and degradation properties of molten alkali nitrates: LiNO 3, NaNO 3, KNO 3, and binary NaNO 3-KNO 3. Metallurgical and Materials Transactions B, 49, 1482-1498.
    [185] Ruiz, M. L., Lick, I. D., Ponzi, M. I., Castellón, E. R., Jiménez-López, A., & Ponzi, E. N. (2010). Thermal decomposition of supported lithium nitrate catalysts. Thermochimica Acta, 499(1-2), 21-26.
    [186] Isfahani, V. B., Pereira, R. F., Fernandes, M., Sabadini, R. C., Pereira, S., Dizaji, H. R., ... & Silva, M. M. (2021). Gellan‐Gum and LiTFSI‐Based Solid Polymer Electrolytes for Electrochromic Devices. ChemistrySelect, 6(20), 5110-5119.
    [187] Li, Y., Yang, J., Zhang, X., Cui, X., & Pan, Q. (2023). Enhancing Li ion conduction through polyethylene glycol brushes towards long-life solid-state lithium metal batteries. Journal of Materials Chemistry A, 11(16), 9029-9038.
    [188] Seidl, L., Grissa, R., Zhang, L., Trabesinger, S., & Battaglia, C. (2022). Unraveling the voltage‐dependent oxidation mechanisms of poly (ethylene oxide)‐based solid electrolytes for solid‐state batteries. Advanced Materials Interfaces, 9(8), 2100704.
    [189] Alipour, M., Ziebert, C., Conte, F. V., & Kizilel, R. (2020). A review on temperature-dependent electrochemical properties, aging, and performance of lithium-ion cells. Batteries, 6(3), 35.
    [190] Zhang, H., Kong, Y. R., Zhang, J., Ren, X. Y., & Ren, X. M. (2023). A flame retardant benzimidazole-linked covalent organic framework as an organic solution sponge for acceleration of Li+-ion migration in solid-state electrolytes. Journal of Materials Chemistry C, 11(41), 14336-14343.
    [191] Hua, H., Huang, B., Yang, X., Cheng, J., Zhang, P., & Zhao, J. (2023). Toward a molecular understanding of the conductivity of lithium-ion conducting polyanion polymer electrolytes by molecular dynamics simulation. Physical Chemistry Chemical Physics, 25(43), 29894-29904.
    [192] Zhang, H., Li, C., Piszcz, M., Coya, E., Rojo, T., Rodriguez-Martinez, L. M., ... & Zhou, Z. (2017). Single lithium-ion conducting solid polymer electrolytes: advances and perspectives. Chemical Society Reviews, 46(3), 797-815.
    [193] Xu, H., Zhang, X., Jiang, J., Li, M., & Shen, Y. (2020). Ultrathin Li7La3Zr2O12@ PAN composite polymer electrolyte with high conductivity for all-solid-state lithium-ion battery. Solid State Ionics, 347, 115227.
    [194] Wang, A., Pei, D., Liu, Z., Huang, S., Cao, G., Jin, H., & Hou, S. (2023). Exploring High Li+ Transference Number Solid-State Electrolytes Based on a Poly (ε-caprolactone) Polymer Matrix with Efficient Lithium Salt Dissociation for Applications in Lithium-Metal Batteries. ACS Applied Energy Materials, 6(15), 8221-8228.
    [195] Dong, G. H., Mao, Y. Q., Yang, G. M., Li, Y. Q., Song, S. F., Xu, C. H., ... & Fu, S. Y. (2021). High-strength poly (ethylene oxide) composite electrolyte reinforced with glass fiber and ceramic electrolyte simultaneously for structural energy storage. ACS Applied Energy Materials, 4(4), 4038-4049.
    [196] Xu, C., Sun, B., Gustafsson, T., Edström, K., Brandell, D., & Hahlin, M. (2014). Interface layer formation in solid polymer electrolyte lithium batteries: an XPS study. Journal of Materials Chemistry A, 2(20), 7256-7264.
    [197] Cui, S., Wu, X., Yang, Y., Fei, M., Liu, S., Li, G., & Gao, X. P. (2021). Heterostructured gel polymer electrolyte enabling long-cycle quasi-solid-state lithium metal batteries. ACS Energy Letters, 7(1), 42-52.
    [198] Zhang, B., Ma, X., Hou, W., Yuan, W., He, L., Yang, O., ... & Xu, Y. (2022). Revealing the Ultrahigh Rate Performance of the La and Ce Co-doping LiFePO4 Composite. ACS Applied Energy Materials, 5(12), 14712-14719.
    [199] Hwang, J., Kong, K. C., Chang, W., Jo, E., Nam, K., & Kim, J. (2017). New liquid carbon dioxide based strategy for high energy/power density LiFePO4. Nano Energy, 36, 398-410.
    [200] Balo, L., Gupta, H., Singh, S. K., Singh, V. K., Tripathi, A. K., Srivastava, N., ... & Singh, R. K. (2019). Development of gel polymer electrolyte based on LiTFSI and EMIMFSI for application in rechargeable lithium metal battery with GO-LFP and NCA cathodes. Journal of Solid State Electrochemistry, 23, 2507-2518.
    [201] Isken, P., Winter, M., Passerini, S., & Lex-Balducci, A. (2013). Methacrylate based gel polymer electrolyte for lithium-ion batteries. Journal of power sources, 225, 157-162.
    [202] Sun, M., Zeng, Z., Hu, W., Sheng, K., Wang, Z., Han, Z., ... & Xie, J. (2022). Scalable fabrication of solid-state batteries through high-energy electronic beam. Chemical Engineering Journal, 431, 134323.
    [203] Shao, D., Wang, X., Li, X., Luo, K., Yang, L., Liu, L., & Liu, H. (2019). Internal in situ gel polymer electrolytes for high-performance quasi-solid-state lithium ion batteries. Journal of Solid State Electrochemistry, 23, 2785-2792.
    [204] Zhang, Y., Wang, J., Zhang, C., & Xue, Z. (2022). Ion-compensation regime between electrolyte and cathode to prepare advanced lithium metal batteries. Materials Today Energy, 29, 101107.
    [205] Heubner, C., Voigt, K., Marcinkowski, P., Reuber, S., Nikolowski, K., Schneider, M., ... & Michaelis, A. (2021). From active materials to battery cells: a straightforward tool to determine performance metrics and support developments at an application‐relevant level. Advanced Energy Materials, 11(46), 2102647.
    [206] Estaller, J., Kersten, A., Kuder, M., Thiringer, T., Eckerle, R., & Weyh, T. (2022). Overview of battery impedance modeling including detailed state-of-the-art cylindrical 18650 lithium-ion battery cell comparisons. Energies, 15(10), 3822.
    [207] Duh, Y. S., Theng, J. H., Chen, C. C., & Kao, C. S. (2020). Comparative study on thermal runaway of commercial 14500, 18650 and 26650 LiFePO4 batteries used in electric vehicles. Journal of Energy Storage, 31, 101580.
    [208] He, Y., Shan, Z., Tan, T., Chen, Z., & Zhang, Y. (2018). Ternary sulfur/polyacrylonitrile/SiO2 composite cathodes for high-performance sulfur/lithium ion full batteries. Polymers, 10(8), 930.
    [209] Mohapatra, S., Teherpuria, H., Chowdhury, S. S. P., Ansari, S. J., Jaiswal, P. K., Netz, R. R., & Mogurampelly, S. (2024). Ion transport mechanisms in pectin-containing EC–LiTFSI electrolytes. Nanoscale, 16(6), 3144-3159.
    [210] Wood, K. N., & Teeter, G. (2018). XPS on Li-battery-related compounds: analysis of inorganic SEI phases and a methodology for charge correction. ACS Applied Energy Materials, 1(9), 4493-4504.
    [211] Aurbach, D., Pollak, E., Elazari, R., Salitra, G., Kelley, C. S., & Affinito, J. (2009). On the surface chemical aspects of very high energy density, rechargeable Li–sulfur batteries. Journal of the Electrochemical Society, 156(8), A694.
    [212] Zhang, S. S. (2016). A new finding on the role of LiNO3 in lithium-sulfur battery. Journal of Power Sources, 322, 99-105.
    [213] Xu, H., Chien, P. H., Shi, J., Li, Y., Wu, N., Liu, Y., ... & Goodenough, J. B. (2019). High-performance all-solid-state batteries enabled by salt bonding to perovskite in poly (ethylene oxide). Proceedings of the National Academy of Sciences, 116(38), 18815-18821.
    [214] Andersson, E. K., Sångeland, C., Berggren, E., Johansson, F. O., Kühn, D., Lindblad, A., ... & Hahlin, M. (2021). Early-stage decomposition of solid polymer electrolytes in Li-metal batteries. Journal of Materials Chemistry A, 9(39), 22462-22471.
    [215] Tonks, J. P., King, M. O., Galloway, E. C., & Watts, J. F. (2017). Corrosion studies of LiH thin films. Journal of Nuclear Materials, 484, 228-235.
    [216] Zhao, Z., Ye, W., Zhang, F., Pan, Y., Zhuo, Z., Zou, F., ... & Li, Q. (2023). Revealing the effect of LiOH on forming a SEI using a Co magnetic “probe”. Chemical Science, 14(43), 12219-12230.
    [217] Koerver, R., Zhang, W., De Biasi, L., Schweidler, S., Kondrakov, A. O., Kolling, S., ... & Janek, J. (2018). Chemo-mechanical expansion of lithium electrode materials–on the route to mechanically optimized all-solid-state batteries. Energy & Environmental Science, 11(8), 2142-2158.
    [218] Sabet, P. S., & Sauer, D. U. (2019). Separation of predominant processes in electrochemical impedance spectra of lithium-ion batteries with nickel-manganese-cobalt cathodes. Journal of Power Sources, 425, 121-129.
    [219] Han, Q., Wang, S., Kong, W., Ren, W., Liu, Y., & Wang, H. (2023). Realizing compatibility of high voltage cathode and poly (ethylene oxide) electrolyte in all-solid-state lithium batteries by bilayer electrolyte design. Chemical Engineering Journal, 454, 140104.
    [220] Guo, J., Zhang, W., Shen, Z., Mao, S., Wang, X., Zhang, S., ... & Lu, Y. (2022). Tuning Ion/Electron Conducting Properties at Electrified Interfaces for Practical All‐Solid‐State Li–Metal Batteries. Advanced Functional Materials, 32(35), 2204742.
    [221] Wang, Z., Yang, K., Song, Y., Lin, H., Li, K., Cui, Y., ... & Pan, F. (2020). Polymer matrix mediated solvation of LiNO3 in carbonate electrolytes for quasi-solid high-voltage lithium metal batteries. Nano Research, 13, 2431-2437.
    [222] Li, W., Pang, Y., Liu, J., Liu, G., Wang, Y., & Xia, Y. (2017). A PEO-based gel polymer electrolyte for lithium ion batteries. RSC advances, 7(38), 23494-23501.
    [223] Cao, C., Li, Y., Feng, Y., Peng, C., Li, Z., & Feng, W. (2019). A solid-state single-ion polymer electrolyte with ultrahigh ionic conductivity for dendrite-free lithium metal batteries. Energy Storage Materials, 19, 401-407.
    [224] Liu, G., Yu, H., Zhu, T., Chen, J., Dong, X., Jia, H., ... & Zhang, S. (2024). Constructing flame retardant microspheres for safe and stable poly (ethylene oxide) based All-Solid-State batteries at high voltage. Chemical Engineering Journal, 485, 149756.
    [225] Chen, Y. R., Chen, L. Y., Chung, C. Y., Su, Y. H., Chen, W. M., Chung, C. H., ... & Wu, M. K. (2024). Quasi-solid lithium-ion cells built with water-soluble pectin and PEG electrolytes. Cell Reports Physical Science. 6(1),102351.

    QR CODE