簡易檢索 / 詳目顯示

研究生: 達努拉
Anurag Dahiya
論文名稱: 非預混乙烯及正十二烷火焰中複雜化學反應之數值模擬與化學動力學建模: 與實驗比較
Numerical simulations and chemical kinetic modeling for complex chemistry in non-premixed flames of ethylene and n-dodecane fuels: Comparison with experiments
指導教授: 林洸銓
Lin, Kuang C.
口試委員: 王謹誠
Wang, Chin-Cheng
廖川傑
Liao, Chaun-Chieh
許智能
Hsu, Chih-Neng
馬偉平
Ma, Wei-Pin
學位類別: 博士
Doctor
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2025
畢業學年度: 113
語文別: 英文
論文頁數: 97
中文關鍵詞: 乙烯正十二烷化學動力學機制非預混火焰多環芳烴
外文關鍵詞: n-dodecane, chemical kinetics mechanism
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • N/A


    This work integrates two studies to enhance the understanding of chemical kinetics and
    reaction pathways in ethylene and n-dodecane combustion. The first study addresses the
    limitations of existing ethylene oxidation mechanisms, developing a skeletal mechanism
    optimized for computational fluid dynamics (CFD). Using path flux analysis (PFA), a
    mechanism is reduced from 664 species and 3582 reactions to 79 species and 538 reactions
    without empirical parameter adjustments. This mechanism accurately predicts experimental
    profiles of hydrocarbons and aromatics in 1-D premixed flames and 2-D axisymmetric laminar
    diffusion flames. Compared to the 158-species Narayanaswamy mechanism, it achieves a 5.5x
    computational speedup with improved accuracy, revealing key low-temperature reaction
    pathways.
    The second study focuses on n-dodecane oxidation, a surrogate for diesel and aviation fuels,
    addressing the complexities of aromatics formation. Using path flux analysis (PFA) and
    artificial neural networks (ANN) for mechanism reduction, a compact mechanism of 155
    species and 827 reactions is developed. This mechanism accurately reproduces experimental
    profiles of flame temperature, aromatics, and soot in a 2-D laminar diffusion flame of methane
    doped with n-dodecane. The study provides novel insights into the spatial distributions of
    aromatics and reaction pathways, filling gaps in existing literature.
    Together, these studies contribute compact, accurate kinetic mechanisms for complex
    hydrocarbon fuels, improving the predictive capability and efficiency of CFD simulations. This
    work advances the understanding of reaction pathways, intermediate species, and soot
    formation in premixed and non-premixed flames.

    Table of Contents Abstract i Acknowledgment ii Table of Contents iii List of Figures v List of Tables xi Nomenclature xiii Chapter 1 Introduction 1 1.1 Background. 1 1.1.1 PAH and soot formation in oxidation of ethylene 1 1.1.2 PAH and soot formation in oxidation of n-dodecane 1 1.2 Literature review 2 1.2.1 Experimental studies of ethylene oxidation 2 1.2.2 Kinetic mechanisms of ethylene oxidation 4 1.2.3 Experimental studies of n-dodecane oxidation 6 1.2.4 Kinetic mechanisms of n-dodecane 7 1.2.5 ANN 8 1.3 Objective 9 1.3.1 PAH and soot formation in the oxidation of ethylene flame 9 1.3.2 PAH and soot formation in the oxidation of n-dodecane flame 9 Chapter 2 Methodology 10 2.1 Mechanism assessment for ethylene 10 2.2 Mechanism assessment for n-dodecane 11 2.3 Mechanism reduction using path flux analysis 13 2.4 Mechanism reduction using artificial neural network 14 2.4.1 Data preprocessing 15 2.4.2 Training process 16 2.4.3 Data postprocessing and mechanism reducing 17 2.5 0-D (Ignition delay time and jet stirred reactor) 17 2.5.1 Ignition delay time 17 2.5.2 Jet stirred reactor 18 2.6 1-D (Laminar flame speed and Premixed tubular reactor) 19 2.6.1 Laminar flame speed 19 2.6.2 Premixed flame 20 2.7 2-D nonpremixed flame 22 Chapter 3 Results 29 3.1 PAH and soot formation in the oxidation of ethylene 29 3.1.1 Mechanism construction and reduction 29 3.1.2 2-D coflow flame 34 3.2 PAH and soot formation in the oxidation of n-dodecane 44 3.2.1 Mechanism construction and reduction 44 3.2.2 2-D coflow flame 55 Chapter 4 Conclusion 69 4.1 Oxidation of ethylene 69 4.2 Oxidation of n-dodecane 69 References 70 Appendix 77

    References
    [1] Murphy D, Carroll R, Klonowski J. Analysis of products of high-temperature pyrolysis of various hydrocarbons. Carbon 1997;35(12):1819-23.
    [2] Wang H, Frenklach M. A detailed kinetic modeling study of aromatics formation in laminar premixed acetylene and ethylene flames. Combustion and Flame 1997;110(1-2):173-221.
    [3] Glassman I, Yetter RA, Glumac NG. Combustion. Academic press; 2014.
    [4] Løvås T, Malik N, Mauss F. Global Reaction Mechanism for Ethylene Flames with Preferential Diffusion. Combustion Science and Technology 2010;182(11-12):1945-60.
    [5] Farhan SM, Wang P. Post-injection strategies for performance improvement and emissions reduction in DI diesel engines—A review. Fuel Processing Technology 2022;228:107145.
    [6] Kennedy IM. The health effects of combustion-generated aerosols. Proceedings of the Combustion Institute 2007;31(2):2757-70.
    [7] Penyazkov O, Sevrouk K, Tangirala V, Joshi N. High-pressure ethylene oxidation behind reflected shock waves. Proceedings of the Combustion Institute 2009;32(2):2421-8.
    [8] Dou S, Yang Q, Jin Y, Xu X. Study on fuel equivalence ratio range for supersonic premixed combustion mode to establish in a scramjet. Acta Astronautica 2022;199:37-48.
    [9] Nishimoto S, Nakaya S, Lee J, Tsue M. Effects of the penetration height of ethylene transverse jets on flame stabilization behavior in a Mach 2 supersonic crossflow. Proceedings of the Combustion Institute 2022.
    [10] Mecklem SA, Landsberg WO, Curran D, Veeraragavan A. Combustion enhancement via tandem cavities within a Mach 8 scramjet combustor. Aerospace Science and Technology 2022;124:107551.
    [11] Landsberg WO, Curran D, Veeraragavan A. Experimental flameholding performance of a scramjet cavity with an inclined front wall. Aerospace Science and Technology 2022;126:107622.
    [12] Peters MA, Alves CT, Onwudili JA. A Review of Current and Emerging Production Technologies for Biomass-Derived Sustainable Aviation Fuels. Energies 2023;16(16):6100.
    [13] Narayanaswamy K, Pepiot P, Pitsch H. Jet fuels and Fischer-Tropsch fuels: Surrogate definition and chemical kinetic modeling. US National Combustion Meeting. 2013:19-22.
    [14] Undavalli V, Gbadamosi Olatunde OB, Boylu R, Wei C, Haeker J, Hamilton J, et al. Recent advancements in sustainable aviation fuels. Progress in Aerospace Sciences 2023;136:100876.
    [15] Castaldi MJ, Marinov NM, Melius CF, Huang J, Senkan SM, Pit WJ, et al. Experimental and modeling investigation of aromatic and polycyclic aromatic hydrocarbon formation in a premixed ethylene flame. Symposium (International) on Combustion 1996;26(1):693-702.
    [16] Wang H, Du D, Sung C, Law CK. Experiments and numerical simulation on soot formation in opposed-jet ethylene diffusion flames. Symposium (International) on Combustion 1996;26(2):2359-68.
    [17] Olten N, Senkan S. Formation of polycyclic aromatic hydrocarbons in an atmospheric pressure ethylene diffusion flame. Combustion and Flame 1999;118(3):500-7.
    [18] McEnally CS, Pfefferle LD. Comparison of non-fuel hydrocarbon concentrations measured in coflowing nonpremixed flames fueled with small hydrocarbons. Combustion and Flame 1999;117(1-2):362-72.
    [19] D'alessio A, D'Anna A, Minutolo P, Sgro L, Violi A. On the relevance of surface growth in soot formation in premixed flames. Proceedings of the Combustion Institute 2000;28(2):2547-54.
    [20] Öktem B, Tolocka MP, Zhao B, Wang H, Johnston MV. Chemical species associated with the early stage of soot growth in a laminar premixed ethylene–oxygen–argon flame. Combustion and Flame 2005;142(4):364-73.
    [21] Hwang J, Chung SH. Growth of soot particles in counterflow diffusion flames of ethylene. Combustion and Flame 2001;125(1-2):752-62.
    [22] Zhao B, Yang Z, Johnston MV, Wang H, Wexler AS, Balthasar M, et al. Measurement and numerical simulation of soot particle size distribution functions in a laminar premixed ethylene-oxygen-argon flame. Combustion and Flame 2003;133(1-2):173-88.
    [23] Singh J, Patterson RI, Kraft M, Wang H. Numerical simulation and sensitivity analysis of detailed soot particle size distribution in laminar premixed ethylene flames. Combustion and Flame 2006;145(1-2):117-27.
    [24] Mikofski MA, Williams TC, Shaddix CR, Fernandez-Pello AC, Blevins LG. Structure of laminar sooting inverse diffusion flames. Combustion and Flame 2007;149(4):463-78.
    [25] Abid AD, Heinz N, Tolmachoff ED, Phares DJ, Campbell CS, Wang H. On evolution of particle size distribution functions of incipient soot in premixed ethylene–oxygen–argon flames. Combustion and Flame 2008;154(4):775-88.
    [26] Guo H, Thomson KA, Smallwood GJ. On the effect of carbon monoxide addition on soot formation in a laminar ethylene/air coflow diffusion flame. Combustion and Flame 2009;156(6):1135-42.
    [27] Dworkin SB, Zhang Q, Thomson MJ, Slavinskaya NA, Riedel U. Application of an enhanced PAH growth model to soot formation in a laminar coflow ethylene/air diffusion flame. Combustion and Flame 2011;158(9):1682-95.
    [28] Guo H, Gu Z, Thomson KA, Smallwood GJ, Baksh FF. Soot formation in a laminar ethylene/air diffusion flame at pressures from 1 to 8 atm. Proceedings of the Combustion Institute 2013;34(1):1795-802.
    [29] Choi S, Choi B, Lee S, Choi J. The effect of liquid fuel doping on PAH and soot formation in counterflow ethylene diffusion flames. Experimental Thermal and Fluid Science 2015;60:123-31.
    [30] Xue X, Singh P, Sung C-J. Soot formation in counterflow non-premixed ethylene flames at elevated pressures. Combustion and Flame 2018;195:253-66.
    [31] Zhang Y, Liu F, Lou C. Experimental and numerical investigations of soot formation in laminar coflow ethylene flames burning in O2/N2 and O2/CO2 atmospheres at different O2 mole fractions. Energy & Fuels 2018;32(5):6252-63.
    [32] Jerez A, Villanueva JC, da Silva LF, Demarco R, Fuentes A. Measurements and modeling of PAH soot precursors in coflow ethylene/air laminar diffusion flames. Fuel 2019;236:452-60.
    [33] Sánchez NE, Callejas A, Millera An, Bilbao R, Alzueta MU. Polycyclic aromatic hydrocarbon (PAH) and soot formation in the pyrolysis of acetylene and ethylene: effect of the reaction temperature. Energy & Fuels 2012;26(8):4823-9.
    [34] Mitra T, Amidpour Y, Chu C, Eaves NA, Thomson MJ. On the growth of Polycyclic Aromatic Hydrocarbons (PAHs) in a coflow diffusion flame of ethylene. Proceedings of the Combustion Institute 2021;38(1):1507-15.
    [35] Slavinskaya NA, Riedel U, Dworkin SB, Thomson MJ. Detailed numerical modeling of PAH formation and growth in non-premixed ethylene and ethane flames. Combustion and Flame 2012;159(3):979-95.
    [36] Wang Y, Raj A, Chung SH. A PAH growth mechanism and synergistic effect on PAH formation in counterflow diffusion flames. Combustion and Flame 2013;160(9):1667-76.
    [37] Chu C, Amidpour Y, Eaves NA, Thomson MJ. An experimental and numerical study of the effects of reactant temperatures on soot formation in a coflow diffusion ethylene flame. Combustion and Flame 2021;233:111574.
    [38] Jin H, Guo J, Li T, Zhou Z, Im HG, Farooq A. Experimental and numerical study of polycyclic aromatic hydrocarbon formation in ethylene laminar co-flow diffusion flames. Fuel 2021;289:119931.
    [39] Narayanaswamy K, Blanquart G, Pitsch H. A consistent chemical mechanism for oxidation of substituted aromatic species. Combustion and Flame 2010;157(10):1879-98.
    [40] Smooke M, Long M, Connelly B, Colket M, Hall R. Soot formation in laminar diffusion flames. Combustion and Flame 2005;143(4):613-28.
    [41] Bockhorn H, Fetting F, Wenz H. Investigation of the formation of high molecular hydrocarbons and soot in premixed hydrocarbon‐oxygen flames. Berichte der Bunsengesellschaft für Physikalische Chemie 1983;87(11):1067-73.
    [42] Richter H, Granata S, Green WH, Howard JB. Detailed modeling of PAH and soot formation in a laminar premixed benzene/oxygen/argon low-pressure flame. Proceedings of the Combustion Institute 2005;30(1):1397-405.
    [43] Grieco WJ, Lafleur AL, Swallow KC, Richter H, Taghizadeh K, Howard JB. Fullerenes and PAH in low-pressure premixed benzene/oxygen flames. Symposium (International) on Combustion 1998;27(2):1669-75.
    [44] Naik CV, Puduppakkam KV, Modak A, Meeks E, Wang YL, Feng Q, et al. Detailed chemical kinetic mechanism for surrogates of alternative jet fuels. Combustion and Flame 2011;158(3):434-45.
    [45] Ranzi E, Frassoldati A, Grana R, Cuoci A, Faravelli T, Kelley A, et al. Hierarchical and comparative kinetic modeling of laminar flame speeds of hydrocarbon and oxygenated fuels. Progress in Energy and Combustion Science 2012;38(4):468-501.
    [46] Zhou C-W, Li Y, Burke U, Banyon C, Somers KP, Ding S, et al. An experimental and chemical kinetic modeling study of 1, 3-butadiene combustion: Ignition delay time and laminar flame speed measurements. Combustion and Flame 2018;197:423-38.
    [47] Pejpichestakul W, Frassoldati A, Parente A, Faravelli T. Kinetic modeling of soot formation in premixed burner-stabilized stagnation ethylene flames at heavily sooting condition. Fuel 2018;234:199-206.
    [48] Pejpichestakul W, Cuoci A, Frassoldati A, Pelucchi M, Parente A, Faravelli T. Buoyancy effect in sooting laminar premixed ethylene flame. Combustion and Flame 2019;205:135-46.
    [49] Ma S, Zhang X, Dmitriev A, Shmakov A, Korobeinichev O, Mei B, et al. Revisit laminar premixed ethylene flames at elevated pressures: A mass spectrometric and laminar flame propagation study. Combustion and Flame 2021;230:111422.
    [50] He J, Li J, Ma X, Meng B, Tian B. Reduction and applicability of chemical kinetic model for ethylene detonation simulation. Fuel 2023;342:127812.
    [51] Vasu SS, Davidson DF, Hong Z, Vasudevan V, Hanson RK. n-Dodecane oxidation at high-pressures: Measurements of ignition delay times and OH concentration time-histories. Proceedings of the Combustion Institute 2009;32(1):173-80.
    [52] Abid AD, Camacho J, Sheen DA, Wang H. Evolution of soot particle size distribution function in burner-stabilized stagnation n-dodecane− oxygen− argon flames. Energy & Fuels 2009;23(9):4286-94.
    [53] Desantes JM, López JJ, García-Oliver JM, López-Pintor D. Experimental validation and analysis of seven different chemical kinetic mechanisms for n-dodecane using a Rapid Compression-Expansion Machine. Combustion and Flame 2017;182:76-89.
    [54] Mze-Ahmed A, Hadj-Ali K, Dagaut P, Dayma G. Experimental and modeling study of the oxidation kinetics of n-undecane and n-dodecane in a jet-stirred reactor. Energy & fuels 2012;26(7):4253-68.
    [55] Kathrotia T, Oßwald P, Köhler M, Slavinskaya N, Riedel U. Experimental and mechanistic investigation of benzene formation during atmospheric pressure flow reactor oxidation of n-hexane, n-nonane, and n-dodecane below 1200 K. Combustion and Flame 2018;194:426-38.
    [56] Kumar K, Sung C-J. Laminar flame speeds and extinction limits of preheated n-decane/O2/N2 and n-dodecane/O2/N2 mixtures. Combustion and Flame 2007;151(1):209-24.
    [57] Mitra T, Zhang T, Sediako AD, Thomson MJ. Understanding the formation and growth of polycyclic aromatic hydrocarbons (PAHs) and young soot from n-dodecane in a sooting laminar coflow diffusion flame. Combustion and Flame 2019;202:33-42.
    [58] Wang Y, Makwana A, Iyer S, Linevsky M, Santoro RJ, Litzinger TA, et al. Effect of fuel composition on soot and aromatic species distributions in laminar, co-flow flames. Part 1. Non-premixed fuel. Combustion and Flame 2018;189:443-55.
    [59] Makwana A, Wang Y, Iyer S, Linevsky M, Santoro RJ, Litzinger TA, et al. Effect of fuel composition on soot and aromatic species distributions in laminar, co-flow flames. Part 2. Partially-premixed fuel. Combustion and Flame 2018;189:456-71.
    [60] Wang H, Li Y, Iqbal Z, Wang Y, Ma C, Yao M. A comparison study on the combustion and sooting characteristics of base engine oil and n-dodecane in laminar diffusion flames. Applied Thermal Engineering 2019;158:113812.
    [61] Mitra T, Chu C, Naseri A, Thomson MJ. Polycyclic aromatic hydrocarbon formation in a flame of the alkylated aromatic trimethylbenzene compared to those of the alkane dodecane. Combustion and Flame 2021;223:495-510.
    [62] Zhang H. Department of Chemical Engineering. Ph.D. University of Utah; 2005.
    [63] Mzé-Ahmed A, Dagaut P, Hadj-Ali K, Dayma G, Kick T, Herbst J, et al. Oxidation of a coal-to-liquid synthetic jet fuel: experimental and chemical kinetic modeling study. Energy & Fuels 2012;26(10):6070-9.
    [64] Westbrook CK, Pitz WJ, Herbinet O, Curran HJ, Silke EJ. A comprehensive detailed chemical kinetic reaction mechanism for combustion of n-alkane hydrocarbons from n-octane to n-hexadecane. Combustion and Flame 2009;156(1):181-99.
    [65] Sarathy SM, Westbrook CK, Mehl M, Pitz WJ, Togbe C, Dagaut P, et al. Comprehensive chemical kinetic modeling of the oxidation of 2-methylalkanes from C7 to C20. Combustion and Flame 2011;158(12):2338-57.
    [66] Ranzi E, Frassoldati A, Grana R, Cuoci A, Faravelli T, Kelley AP, et al. Hierarchical and comparative kinetic modeling of laminar flame speeds of hydrocarbon and oxygenated fuels. Progress in Energy and Combustion Science 2012;38(4):468-501.
    [67] Malewicki T, Gudiyella S, Brezinsky K. Experimental and modeling study on the oxidation of Jet A and the n-dodecane/iso-octane/n-propylbenzene/1,3,5-trimethylbenzene surrogate fuel. Combustion and Flame 2013;160(1):17-30.
    [68] Cai L, Pitsch H, Mohamed SY, Raman V, Bugler J, Curran H, et al. Optimized reaction mechanism rate rules for ignition of normal alkanes. Combustion and Flame 2016;173:468-82.
    [69] Narayanaswamy K, Pepiot P, Pitsch H. A chemical mechanism for low to high temperature oxidation of n-dodecane as a component of transportation fuel surrogates. Combustion and Flame 2014;161(4):866-84.
    [70] Chang Y, Jia M, Liu Y, Li Y, Xie M, Yin H. Application of a Decoupling Methodology for Development of Skeletal Oxidation Mechanisms for Heavy n-Alkanes from n-Octane to n-Hexadecane. Energy & Fuels 2013;27(6):3467-79.
    [71] Luo Z, Som S, Sarathy SM, Plomer M, Pitz WJ, Longman DE, et al. Development and validation of an n-dodecane skeletal mechanism for spray combustion applications. Combustion Theory and Modelling 2014;18(2):187-203.
    [72] Wang H, Ra Y, Jia M, Reitz RD. Development of a reduced n-dodecane-PAH mechanism and its application for n-dodecane soot predictions. Fuel 2014;136:25-36.
    [73] Yao T, Pei Y, Zhong B-J, Som S, Lu T. A hybrid mechanism for n-dodecane combustion with optimized low-temperature chemistry. 9th US national combustion meeting. 5. 2015.
    [74] Zhang T, Thomson MJ. A numerical study of the effects of n-propylbenzene addition to n-dodecane on soot formation in a laminar coflow diffusion flame. Combustion and Flame 2018;190:416-31.
    [75] Xi S, Xue J, Wang F, Li X. Reduction of large-size combustion mechanisms of n-decane and n-dodecane with an improved sensitivity analysis method. Combustion and Flame 2020;222:326-35.
    [76] Sun M, Gan Z, Yang Y. Numerical and experimental investigation of soot precursor and primary particle size of aviation fuel (RP-3) and n-dodecane in laminar flame. Journal of the Energy Institute 2021;94:49-62.
    [77] Killingsworth NJ, Nguyen TM, Brown C, Kukkadapu G, Manin J. Investigating the effects of chemical mechanism on soot formation under high-pressure fuel pyrolysis. Frontiers in Mechanical Engineering 2021;7:765478.
    [78] Jia Chiet Choo E, Cheng X, Kiat Ng H, Gan S, Scribano G. Development and validation of a new n-dodecane-n-butanol-PAH reduced mechanism under diesel engine-relevant conditions. Fuel 2022;319:123829.
    [79] Blanquart G, Pepiot-Desjardins P, Pitsch H. Chemical mechanism for high temperature combustion of engine relevant fuels with emphasis on soot precursors. Combustion and Flame 2009;156(3):588-607.
    [80] Niemeyer KE, Sung C-J, Raju MP. Skeletal mechanism generation for surrogate fuels using directed relation graph with error propagation and sensitivity analysis. Combustion and Flame 2010;157(9):1760-70.
    [81] Yu C, Minuzzi F, Bykov V, Maas U. Methane/Air Auto-Ignition Based on Global Quasi-Linearization (GQL) and Directed Relation Graph (DRG): Implementation and Comparison. Combustion Science and Technology 2020;192(9):1802-24.
    [82] Zhou Z, Lü Y, Wang Z, Xu Y, Zhou J, Cen K. Systematic method of applying ANN for chemical kinetics reduction in turbulent premixed combustion modeling. Chinese Science Bulletin 2013;58(4):486-92.
    [83] De Bortoli A, Pereira F. Obtaining a reduced kinetic mechanism for Methyl Butanoate. Journal of Mathematical Chemistry 2019;57(3):812-33.
    [84] Pereira F, De Bortoli A. Solutions for a turbulent jet diffusion flame of ethanol with NOx formation using a reduced kinetic mechanism obtained by applying ANNs. Fuel 2018;231:373-8.
    [85] Pereira F, De Bortoli A. Obtaining a reduced kinetic mechanism for methyl decanoate using layerless neural networks. Fuel 2019;255:115787.
    [86] Padilha F, De Bortoli A. Solutions for a laminar jet diffusion flame of methyl formate using a skeletal mechanism obtained by applying ANNs. Journal of Mathematical Chemistry 2019;57(10):2229-47.
    [87] Agency USEP. Health assessment document for diesel engine exhaust. 2002.
    [88] Saxena S, Kahandawala M, Sidhu SS. A shock tube study of ignition delay in the combustion of ethylene. Combustion and Flame 2011;158(6):1019-31.
    [89] Pfahl U, Fieweger K, Adomeit G. Self-ignition of diesel-relevant hydrocarbon-air mixtures under engine conditions. Symposium (international) on combustion. 26. Elsevier; 1996:781-9.
    [90] Lu T, Law CK. A directed relation graph method for mechanism reduction. Proceedings of the Combustion Institute 2005;30(1):1333-41.
    [91] Pepiot-Desjardins P, Pitsch H. An efficient error-propagation-based reduction method for large chemical kinetic mechanisms. Combustion and Flame 2008;154(1-2):67-81.
    [92] Lu T, Law C, Chen J. Development of non-stiff reduced mechanisms for direct numerical simulations. 46th AIAA Aerospace Sciences Meeting and Exhibit 2008:1010.
    [93] Gou X, Sun W, Chen Z, Ju Y. A dynamic multi-timescale method for combustion modeling with detailed and reduced chemical kinetic mechanisms. Combustion and Flame 2010;157(6):1111-21.
    [94] Sun W, Chen Z, Gou X, Ju Y. A path flux analysis method for the reduction of detailed chemical kinetic mechanisms. Combustion and Flame 2010;157(7):1298-307.
    [95] Lu T, Law CK. On the applicability of directed relation graphs to the reduction of reaction mechanisms. Combustion and Flame 2006;146(3):472-83.
    [96] MatLab P. 9.7. 0.1190202 (R2019b). The MathWorks Inc: Natick, MA, USA 2018.
    [97] CHEMKIN P. 19.0, ANSYS. Inc: San Diego 2018.
    [98] Kopp MM, Donato NS, Petersen EL, Metcalfe WK, Burke SM, Curran HJ. Oxidation of ethylene–air mixtures at elevated pressures, part 1: experimental results. Journal of Propulsion and Power 2014;30(3):790-8.
    [99] Togbé C, May-Carle J-B, Dayma G, Dagaut P. Chemical Kinetic Study of the Oxidation of a Biodiesel− Bioethanol Surrogate Fuel: Methyl Octanoate− Ethanol Mixtures. The Journal of Physical Chemistry A 2010;114(11):3896-908.
    [100] Egolfopoulos F, Zhu D, Law CK. Experimental and numerical determination of laminar flame
    speeds: Mixtures of C2-hydrocarbons with oxygen and nitrogen. Symposium (International)
    on Combustion 1991;23(1):471-8.
    [101] Hassan M, Aung K, Kwon O, Faeth G. Properties of laminar premixed hydrocarbon/air flames
    at various pressures. Journal of Propulsion and Power 1998;14(4):479-88.
    [102] Jomaas G, Zheng X, Zhu D, Law CK. Experimental determination of counterflow ignition
    temperatures and laminar flame speeds of C2–C3 hydrocarbons at atmospheric and elevated
    pressures. Proceedings of the Combustion Institute 2005;30(1):193-200.
    [103] Ji C, Dames E, Wang YL, Wang H, Egolfopoulos FN. Propagation and extinction of premixed
    C5–C12 n-alkane flames. Combustion and Flame 2010;157(2):277-87.
    [104] Hui X, Sung C-J. Laminar flame speeds of transportation-relevant hydrocarbons and jet fuels
    at elevated temperatures and pressures. Fuel 2013;109:191-200.
    [105] ANSYS. Fluent user's guide. In: Inc. A, ed. Canonsburg, PA: ANSYS Inc.; 2021.
    [106] San Diego C, USA. CHEMKIN-CFD. Reaction Design Inc; 2010.
    [107] Shaddix CR. Correcting thermocouple measurements for radiation loss: A critical review.
    United States: American Society of Mechanical Engineers, New York, NY (US); 1999.
    [108] De Falco G, Commodo M, D'Anna A, Minutolo P. The evolution of soot particles in premixed
    and diffusion flames by thermophoretic particle densitometry. Proceedings of the Combustion
    Institute 2017;36(1):763-70.
    [109] Hall R, Smooke M, Colket M. Physical and chemical aspects of combustion. A Tribute to Irvine
    Glassman 1997;189.
    [110] Fluent A. Ansys fluent theory guide. Ansys Inc, USA 2011;15317:724-46.
    [111] Bering R, Buskov K. Numerical investigation of the soot initiated formation of ultra fine
    particles in a jet turbine engine using conventional jet fuel. Aalborg University p 2012;25.
    [112] Frenklach M, Yuan T, Ramachandra M. Soot formation in binary hydrocarbon mixtures. Energy
    & fuels 1988;2(4):462-80.
    [113] Reddy M, De A, Yadav R. Effect of precursors and radiation on soot formation in turbulent
    diffusion flame. Fuel 2015;148:58-72.
    [114] Wen Z, Yun S, Thomson M, Lightstone M. Modeling soot formation in turbulent kerosene/air
    jet diffusion flames. Combustion and Flame 2003;135(3):323-40.
    [115] Cowart SV, Krishnamoorthy G. On the relative contributions of soot to radiative heat transfer
    at different oxygen indices in ethylene – O2/CO2 laminar diffusion flames. Fuel
    2021;285:119269.
    [116] Lee K, Thring M, Beer J. On the rate of combustion of soot in a laminar soot flame. Combustion
    and Flame 1962;6:137-45.
    [117] Ouf F-X, Bourrous S, Fauvel S, Kort A, Lintis L, Nuvoli J, et al. True density of combustion
    emitted particles: A comparison of results highlighting the influence of the organic contents.
    Journal of Aerosol Science 2019;134:1-13.
    [118] Zhang X, Wang N, Xie Q, Zhou H, Ren Z. Global sensitivity analysis and uncertainty
    quantification of soot formation in an n-dodecane spray flame. Fuel 2022;320:123855.
    [119] Zhang K, Xu Y, Liu Y, Wang H, Liu Y, Cheng X. Effects of ammonia addition on soot formation
    in ethylene laminar diffusion flames. Part 2. Further insights into soot inception, growth and
    oxidation. Fuel 2023;331:125623.
    [120] Lu T, Ju Y, Law CK. Complex CSP for chemistry reduction and analysis. Combustion and
    Flame 2001;126(1-2):1445-55.
    [121] Liu F, Karataş AE, Gülder ÖL, Gu M. Numerical and experimental study of the influence of
    CO2 and N2 dilution on soot formation in laminar coflow C2H4/air diffusion flames at
    pressures between 5 and 20atm. Combustion and Flame 2015;162(5):2231-47.
    [122] Kennedy IM. Models of soot formation and oxidation. Progress in Energy and Combustion
    Science 1997;23(2):95-132.
    [123] Tao H, Wang H-Y, Ren W, Lin KC. Kinetic mechanism for modeling the temperature effect on
    PAH formation in pyrolysis of acetylene. Fuel 2019;255:115796.
    [124] Lu T, Law C, Chen J. Development of non-stiff reduced mechanisms for direct numerical
    simulations. 46th AIAA Aerospace Sciences Meeting and Exhibit. 2008:1010.
    [125] Herbinet O, Marquaire P-M, Battin-Leclerc F, Fournet R. Thermal decomposition of n-
    dodecane: Experiments and kinetic modeling. Journal of analytical and applied pyrolysis
    2007;78(2):419-29.
    [126] Kukkadapu G, Wagnon SW, Pitz WJ, Hansen N. Identification of the molecular-weight growth
    reaction network in counterflow flames of the C3H4 isomers allene and propyne. Proceedings
    of the Combustion Institute 2021;38(1):1477-85.
    [127] Yu W, Zhao F, Yang W, Tay K, Xu H. Development of an optimization methodology for
    formulating both jet fuel and diesel fuel surrogates and their associated skeletal oxidation
    mechanisms. Fuel 2018;231:361-72.

    QR CODE