研究生: |
林芳玉 Fang Yu Lin |
---|---|
論文名稱: |
國小學生在等值分數上的表徵轉換表現 Elementary School Student's Representation Translation Performance on Equivalence Fraction |
指導教授: | 林碧珍 |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
|
論文出版年: | 2004 |
畢業學年度: | 92 |
語文別: | 中文 |
論文頁數: | 151 |
中文關鍵詞: | 表徵 、等值分數 、表徵轉換 |
外文關鍵詞: | Equivalence Fraction, Representation, Representation Translation |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
國小學生在等值分數上的表徵轉換表現
摘要
本研究之研究目的旨在探討國小四、五、六年級學生在等值分數概念上,對各種表徵轉換的表現情形為何。研究樣本為國小四、五、六年級共729名學生,研究工具採紙筆測驗,並透過變異數分析方式求得學生在圖形與符號兩種表徵不同的轉換模式中的比較;於紙筆測驗後,採半結構的訪談研究方式,以求得學生由「符號表徵」轉換到「圖形表徵」、「操作物表徵」及「真實情境表徵」的各種表現。研究結果呈現在各種類型題目中,大致上都是六年級表現最好、五年級次之,四年級最差,其他結果表現則如下:
1. 對各年級學生而言,都是「圖形表徵轉換到符號表徵」表現優於「符號表徵轉換到圖形表徵」,若進一步將「圖形表徵內的轉換」加入比較,則又可發現,四年級學生在「圖形表徵內轉換」的表現和上述兩種轉換比較,表現最差,到了五、六年級,學生在「圖形表徵內的轉換」和此兩種表徵間的轉換則無顯著差異。
2. 四、五年級學生在三種分數意義的表現分別是「部分-全體」優於「集合子集」,表現最差的是「數線」題型,對六年級學生而言,數線雖仍是最困難的題型,但「部分-全體」、「集合子集」此兩者已無表現上的顯著差異。
3. 各年級在等值分數「部分-全體」的分數意義中,對圖形表徵中單位量分割份數的難度層次,分別是「單位量分割份數等於分母」表現優於「等於分母的因數」、「等於分母的倍數」、最難的都是「與分母無關」的題型。「集合-子集」意義也都是「等於分母」的題目表現優於「等於分母的倍數」題型;至於在「數線」的表現,四年級學生最能接受「等於分母」,其他類型無顯著差異,五年級學生最容易的題目也是「等於分母」,最困難的題目則是「與分母無關」,至於「是分母的因數」與「是分母的倍數」兩者則無顯著差異,六年級學生四種類型難度層次差異則較明顯,由易而難分別是「等於分母」、「等於分母的因數」、「等於分母的倍數」、「與分母無關」。
4. 四年級學生符號表徵中「求分子」的題目表現比「求分母」好,但對五、六年級學生而言,此兩種類型對學生而言無明顯的難度差異。
5. 透過訪談分析學生由符號表徵轉換到「圖形表徵」、「操作物表徵」及「真實情境表徵」的各種作答情形時,大致都可將作答類型分為三種,第一種是學生能利用這三種表徵表徵出等值分數的意義;第二種則是學生具備等值分數的符號運算技巧(符號運算公式),卻無法利用此三種表徵表徵出等值分數的意義;第三種類型則是學生不具備等值分數的運算技巧規則,也不能表徵出等值分數概念的意義。
Elementary School Student's Representation Translation Performance on Equivalence Fraction ABSTRACT
The purpose of this study was to investigate elementary school student's representation translation on equivalence fraction. Based on the questionnaire survey, the participants are 729 forth, fifth and sixth graders from 7 different elementary school. The study adopted questionnaire survey with the paper test firstly to collect students’ scoring performance based their translation between the two representations – “Picture” and “Symbol” representation on equivalence fraction, and compare the different performance of students via ANOVA; After paper test, the researcher also took the sub-construct interview method to 18 students from these participants, and expected to explore the performance of these students when they transfer from “Symbol representation” to “Picture representation”, “Manipulative representation” and “Real World Situations representation” . The study reveals that no matter what kind of the task types, sixth grade students always got the highest score, and forth grade students always got the worst. The other major results of this study are summarized as below:
1. For all students no matter the grade, the performance of “From Picture representation transfer to Symbol representation” is always better than of “From Symbol representation transfer to Picture representation”. If go a step further to compare with the “Translation between the Picture representation”, then the study revels that comparison with the grade 4 student’s performance on “translation within Picture representation” and above two translation, it’s the worst, but when they become fifth or sixth grade, there is no big difference among the students’ “translation within Picture representation” and the translation between the two representations.
2. To take one step ahead for analysis and compare the student’s scoring effect on the three fraction interpretations, and researcher found that forth, fifth grade students’ performance is “part-whole” better than “set-unit”; they got worst performance on “Number line” subject, however for the students of grade sixth, “Number Line” subject is still the most difficult question, but there is no significant difference on performance between “part-whole” and “set-unit” .
3. In the “part-whole” interpretation of equivalence fraction, to all students the degree of difficulty of the four numbers of what the Whole divided into Picture representation, is “numbers of what the Whole divided into equal to denominator” better than “numbers of what the Whole divided into equal to a factor of denominator”, “numbers of what the Whole divided into equal to a multiple of denominator”, the most difficult is “numbers of what the Whole divided into to have no relationship with denominator” Subject. For the “Set-Unit” interpretation performance of every grade is also , “numbers of what the Whole divided into equal to a factor of denominator” better than “numbers of what the Whole divided into equal to a multiple of denominator”; as to “Number Lines” performance, the fourth grade student can accept “numbers of what the Whole divided into equal to a factor of denominator” better, but no significant difference for other topics; the easiest subject for fifth grade is also “numbers of what the Whole divided into equal to a factor of denominator”, and the most difficulty question is “numbers of what the Whole divided into to have no relationship with denominator”. However there is no big difference between “equal to a factor of denominator” and “equal to a multiple of denominator”, the difference is more obvious for the degree of difficulty of sixth grade student, from simple to hard is “numbers of what the Whole divided into equal to denominator”, “numbers of what the Whole divided into equal to a factor of denominator”, “numbers of what the Whole divided into equal to a multiple of denominator”, “numbers of what the Whole divided into to have no relationship with denominator”.
4. The difference comparison between “to figure up the numerator” and “to figure up the denominator” under “translation within Symbol representation”, “to figure up the numerator” is better for “to figure up the denominator” for forth grade students. But there is no apparently difficulty difference between the two types for students of fifth and sixth grade students.
5. During Interview and analysis the students’ each answering circumstances from Symbol representation translation to “Picture representation”, “Manipulative representation” and “Real World Situations representations”, we can divided the student’s answering model to three types: The 1st type is students can take advantage of the three representations to represent the equivalence fraction’s meaning; the second type is , students have the operation skills of equivalence fraction(Symbol operation formula), but cannot use the three representations to represent the meanings of the equivalence fraction; the third type is that the students either don’t have any operation skills or rules of equivalence fraction, or cannot represent the meaning of the equivalence fraction concept.
參考文獻
一、中文部分
呂玉琴(1994)國小教師分數教學之相關知識研究。國立台灣師範大學科學教育研究所博士論文(未出版)。
呂玉琴(1991a)分數概念:文獻探討。臺北師院學報,第四期,P573∼606。
呂玉琴(1991b)國小學生的分數概念:1/2 vs.1/4。國民教育,第31卷11,12期,P10∼15。
吳毓瑩,呂玉琴(1996)"潛在類別分析" 取向的數學概念結構及其在合作學習上的應用-以國小四年級等值分數學習為例。國科會計畫編號NSC85-2511-S152-007。
李端明(2001)「分數詞」之解題活動類型—一個國小四年級兒童之個案研究。國民教育研究集刊,第9期,P277∼293頁。
林碧珍(2001)從數學學習歷程檔案評量看九年一貫課程數學學習領域的「連結」。新竹師範學院編印:九年一貫課程理念與做法(頁149-202)。新竹市:新竹師範學院。
林碧珍(1990)從圖形表徵與符號表徵之間的轉換探討國小學生的分數概念。新竹師院學報,第四期,295∼347。
林碧珍,蔡文煥(2003)我國國小四年級學生在國際教育成就2003試測的數學成就表現。載於:國立台南師範學院九十二學年度師範學院教育學術論文發表會論文集(編號92115)。
林福來,黃敏晃,呂玉琴(1996)分數啟蒙的學習與教學之發展性研究。科學教育學刊,第四卷第二期,P161∼196。
林福來,黃敏晃(1993)分數啟蒙課程的分析、批判與辯證。科學教育學刊,第一卷第一期,1∼27。
周筱亭,黃敏晃(主編)(2001)國小數學教材分析-分數的數概念與運算。台北縣:教育部台灣省國民學校教師研習會出版。
黃永和(1997)「教學表徵」--教師的教學法寶。國教世紀,第178期,P17∼24。
黃道譯(1990)心理學與認識論 : 一種有關知識的理論,原著者皮亞傑。結構群文化事業有限公司。
黃馨瑋(1995)國小高年級學童分數數線表示法瞭解之研究。國立台中師範學院初等教育研究所碩士論文(未出版)。
教育部(2003)國民中小學九年一貫綱要數學學習領域(修訂版)。
教育部(2000)國民教育九年一貫課程系列重書二基本能力實踐策略。
張紹勳,張紹評,林秀娟(2000)SPSS For Windows 統計分析-初等統計與高等統計。台北市:松崗電腦圖書資料股份有限公司。
游自達(1995)數學學習與理論之內涵—從心理學觀點分析。初等教育研究集刊,3期,P31∼45。
彭海燕(1997)國小學童等值分數概念瞭解之研究。國立台北師範學院數理教育研究所碩士論文(未出版)。
湯錦雲(2002)國小五年級學童分數概念與運算錯誤類型之研究。國立台南師範學院(未出版)。
詹婉華(2003)國小高年級學童分數概念之探究。國立台北師範學院數理教育研究所碩士論文(未出版)。
楊壬孝(1987)。國中小學生分數概念的發展。國科會專題研究計畫報告。NSC76-0111-S-003-10。
楊壬孝(1988)。國中小學生分數概念的發展。國科會專題研究計畫報告。NSC77-0111-S-003-09A。
楊壬孝(1989)。國中小學生分數概念的發展。國科會專題研究計畫報告。NSC78-0111-S-003-06A。
楊瑞智(2000)。探究師院生之分數基本概念及分數概念的課室教學。台北市立師範學院學報,31期,p357∼382。
楊雅捷(2002)語言表徵在數學解題上扮演的角色。國教天地,第150期,P40∼46。
甯自強(1997a)量的子分割(二)~真分數的引入~。教師之友,第38卷4期,P33~39。
甯自強(1997b)量的子分割(三)∼等值分數的引入∼。教師之友,第38卷5期,P36∼40。
甯自強(1995)五個區分數與計算教材設計的影響。論文發表於84年師院教授座談會。板橋國民學校教師研究會。
甯自強(1993)分數的啟蒙∼量的子分割活動的引入∼。教師之友,34卷第3期,P45∼55。
劉世能(2002)臺灣北部地區國小高年級學生分數概念的研究。國立台北師範學院數理教育學系碩士論文(未出版)。
蔣治邦(1994)由表徵觀點探討實驗教材數與計算活動的設計。載於:國立嘉義師院八十二學年數學教育研討會論文暨會議實錄彙編。
羅鴻翔譯(1970)分數的數之發展。國教之友,454-455期,P36∼41。
龐嘉芬(2001)國小高年級學童分數概念與能力之研究。國立屏東師範學院數理教育研究所碩士論文(未出版)。
二、英文部分
Behr, M., & Post, T. (1992). Teaching rational number and decimal concepts. In T. Post (Ed.), Teaching mathematics in grades K-8: Research-based methods (pp. 201-248). Boston:Alley & Bacon.
Behr, M., Lesh, R., & Post, T. (1987a). Representations and translations among representations in mathematics learning and problem solving. In C. Janvier (Ed.), Problems of representation in the teaching and learning of mathematics (pp. 33-40). Hillsdale: Lawrence Erlbaum Associates.
Behr, M., Lesh, R., & Post, T. (1987b). Rational number relations and proportions. In C. Janvier (Ed.), Problems of representation in the teaching and learning of mathematics (pp. 41-58). Hillsdale: Lawrence Erlbaum Associates.
Behr, M., Wachsmuth, I., Lesh, R., & Post, T. (1985). Order and equivalence of rational number: A cognitive analysis. Journal for research in mathematics education, 16(1), 18-37.
Behr, M., Wachsmuth I., Lesh, R., & Post, T. (1984). Order and equivalence of rational number: A clinical teaching experiment. Journal for research in mathematics education, 15(5), 323-341.
Behr, M. J., Lesh R., Post T. R., & Silver E.A. (1983). Rational-Number Concepts. In R. Lesh, & M. Landau.(Eds.), Acquisition of mathematics concepts and processes(pp. 91-126). New York: Academic Press.
Bright, G. W., Behr, M. J., Lesh, R., & Wachsmuth, I. (1988). Identifying fractions on number lines. Journal for research in mathematics education, 19(3), 215-232.
Bruner, J. S. (1966). Toward a theory of instruction. Cambridge : Harvard University Press.
Diskson, L., Brown, M., & Gibson, O. (1984). Children learning mathematics : A teacher’s guide to recent research. Oxford : Alden Press.
Duval, R. (2000). Basic issues for research in mathematics education. The 24th International Conference for the Psychology of Mathematics Education.
Izsak, H. (2000). ”We want a statement that is always true”: Criteria for good algebraic representations and development of modeling knowledge. Journal for research in mathematics education, 34(3), 191-227.
Girden, R. E. (1992).ANOVA Repeated Measures.
Greeno, J. G. & Hall, R. P. (1997). Practicing representation. Phi Delta Kappan, 78(5), 361-367.
Hart, K. M. (1981). Fractions. In K. M. Hart, D. Kerslake, M. L. Brown, G. Ruddock, D. E. Kuchemann, & M. McCartney(Eds.), Children understanding of mathematics (pp. 11-16). Oxford: London/Northampton.
Hasegawa, J. (2000). Classroom discussion on the representation of quantity by fraction: Stability of misconception and implications to practices. The 24th International Conference for the Psychology of Mathematics Education.
Hiebert, J., & Carpenter, P. T. (1992). Learning and teaching with understanding. In D. A. Grouws(Ed.), Handbook of research on mathematics teaching and learning(pp.65-333). New York: Macmillan.
Kammi, C., & Clark, F. B. (1995). Equivalent fractions: Their difficulty and educational implications. Journal of mathematical behavior, 14, 365-378.
Kammi, C., & Warrington M. A. (1999). Teaching fractions: Fostering children’s own reasoning. National Council of Teachers of Mathematics Yearbook, (pp. 82-92). NCTM : Reston.
Kieren, T. E. (1980). The rational number construct--its elements and mechanisms. In T. E. Kieren (ED.), Recent research on number learning, (pp.125-150). Ohio : ERIC / SMEAC.
Kaput, J. (1987). Representation systems and mathematics. In C. Janvier (ED.), Problems of representation in the teaching and learning of mathematics (pp. 19-26). Hillsdale: Lawrence Erlbaum Associates.
Karen, N., & Murray, H. (1998). Young students constructions of fractions. The 22th International Conference for the Psychology of Mathematics Education.
Laura, B. (1997).Using structures representation to solve fraction problem: a discussion of seven students’ strategies. The annual meeting of the American Education Research Association. Chicago. IL March 1997.
Lesh, R. (1979). Mathematical learning disabilities: Considerations for identification, diagnosis, and remediation. In R. Lesh, D. Mierkiewicz, & MG Kantowski(Eds.), Applied mathematical problem solving(pp. 111-180). Columbus, Ohio: ERIC/SMEAC, 1979.
Lesh R., Landau M., & Hamilton E. (1983). Conceptual models and applied mathematical problem-solving research. In R. Lesh, & M. Landau, Acquisition of mathematics concepts and processes (pp. 263-343). New York: Academic Press.
Masataka, K. (1997).Students’ representations of fractions in a regular elementary school mathematics classroom. The 21th International Conference for the Psychology of Mathematics Education.
Moss, J., & Case, R. (1999).Development children’s understanding of the rational numbers: A new model and an experimental curriculum. Journal for research in mathematics education, 30(2), 122-147.
Novillis Larson C. (1980).Locating proper fraction on number lines: Effect of length and equivalence. School science and mathematics, 5, 423-428.
Ohlsson, S. (1988).Mathematical meaning and applicational meaning in semantics of fraction and related concepts. IN J. Hiebert, & M. Behr(Eds), Number Concepts and Operations in the Middle Grades (pp. 53-92). Reston: The National Council of Teachers of Mathematics.
Ozgun-Koca, S. (1998).Students’ use of representations in mathematics education. The 22th International Conference for the Psychology of Mathematics Education.
Streefland, L.(1991). Fractions in realistic mathematics education:
A paradigm of developmental research. Boston: Kluwer Academic Publishers.
Taber, S. B. (2001).Making connections among different representations: The case of multiplication of fractions. The Annual Meeting of the American Educational Research Association.
Tzu-Ta Yiu(1993).A study of American children’s understanding of fraction size and their thinking strategies.
Valdemoros, M. (1994).Various representation of the fraction through a case study. The 18th International Conference for the Psychology of Mathematics Education. Bulletin of research on elementary education, 1, 121-145.
Vence J. H. (1992)Understanding equivalence: A number by any other name. School science and mathematics, 92(5), 263-266.
Voigt, J. (1991).Negotiation of mathematical meaning in classroom processes: Social interaction and learning mathematics. In B. L. Resnick, ML. John, D. T. Stephanie(Eds). Perspectives on socially shared cognition. (pp. 21-50). Washington DC. : American Psychological Association.
Von Glasersfleld, E. (1987).Preliminaries to any theory of representation. In C. Janvier(Ed.), Problems of representation in the teaching and learning of mathematics.(pp. 215-225). Hillsdale: Lawrence Erlbaum Associates