簡易檢索 / 詳目顯示

研究生: 蘇正宇
Su, Cheng-Yu
論文名稱: 電子與矽光子積體電路的歷史回顧 設計自動化工具PIC Studio之挑戰與機會
A Historical Review on Electronic and Silicon Photonics Integrated Circuits Challenges and Opportunities for Design Automation Tool PIC Studio
指導教授: 林世昌
Lin, Shih-Chang
口試委員: 陳添枝
Chen, Tain-Jy
陳宏明
Chen, Hung-Ming
巫勇賢
Wu, Yung-Hsien
曾雅雯
Tseng, Ya-Wen
學位類別: 碩士
Master
系所名稱: 科技管理學院 - 高階經營管理碩士在職專班
Executive Master of Business Administration(EMBA)
論文出版年: 2024
畢業學年度: 112
語文別: 英文
論文頁數: 47
中文關鍵詞: 電子設計自動化矽光子光電整合製程設計套件晶圓製造廠
外文關鍵詞: Photonics, Process Design Kit
相關次數: 點閱:90下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 積體電路 (Integrated Circuit, IC) 的發展在過去幾十年對科技的進步發揮了關鍵作用,大幅提高在單元(Unit) CMOS積體電路上集成越來越多電晶體和開發電子系統與產品的能力。
    在光學領域,光子積體電路 (Photonics Integrated Circuit, PIC) 作為光學的等效體,將各種微型光學元件,如波導、干涉裝置、雷射和環形諧振器進行集成,這些並非我們在傳統積體電路中通常看到的電晶體。在此微系統平台上整合電子和光子元件,有望在多個領域帶來技術性的革命,影響遍及電信、生物醫學產業、無人導航系統和相關的感測技術。
    若能朝著集成甚或取代大規模光學和光電元件之晶片系統邁進,將有助於大幅減少產品體積、重量、功耗和成本。
    本論文首先回顧電子設計自動化(EDA)的歷史,接續探討光子電路設計技術發展的歷史及過程,並將其與傳統(EDA)的技術和演變進行比較。同時,本論文進一步探討Latitude Design Systems所開發的商業工具:PIC Studio在實際應用場域中所能提供的功能與價值,更近一步的我們進行矽光子與電子設計自動化的比較分析,並進一步探討矽光子設計技術領域面臨的挑戰和其潛在之創新機會,包括設計變異性分析、光子與電子工作流程和模擬的整合,以及簡化架構框架的整合展望。
    期望由此論文研究,增加台灣半導體業界對矽光子產業之了解,同時強化台灣半導體產界對PIC 設計工具應用之關注。


    Electronic integrated circuits have been pivotal for technological evolvement throughout the last couple of decades, significantly improving the capability of integrating an increasing number of transistors and develop electronic devices on a single CMOS integrated circuit.
    In the realm of optics, Photonic Integrated Circuits (PICs) serve as an optical equivalent, incorporating various miniaturized optical components such as waveguides, interference devices, lasers, and ring resonators, instead of transistors, as we usually see in electronic integrated circuits. The integration of electronic and photonic components on an eco-microsystem platform holds the promise of revolutionizing technologies across several sectors, including telecommunications, biomedical industry, autonomous navigation system, and sensing technology. Moving toward on-chip systems that integrate or even to replace large-scale optical and electro-optical components mean a significant reduction in size, weight, power consumption, and cost.
    This thesis starts by looking back the history of Electronic Design Automation history, then delves into the evolving fields of photonic circuit design technology development history, processes, and comparing it with traditional (EDA) techniques and evolvement. We then further delve into a commercial tool: PIC Studio from Latitude Design Systems, where we further explore the comparative analysis between silicon photonic and electronic designs, as well as the upcoming challenges and potential innovations in the silicon photonic design technology area, including design variability analysis, the integration of photonic and electronic workflow and simulations, and integration of simplified modeling frameworks.

    Abstract I Table of Content IV List of Figures VI Chapter 1 Introduction 1 Chapter 2 A Historical Review of EDA 3 2.1 Design Automation Conference 3 2.2 Circuit Simulation 3 2.3 Logic Testing and Simulation & MOS Timing Simulation 3 2.4 Wire Routing & Regular Array Design 4 Chapter 3 Commercialization of EDA 6 3.1 The First Wave [3.1] 6 3.2 The Growing Phase 6 3.3 Verification 6 3.4 Layout 7 3.5 Logic Synthesis 8 3.6 Hardware Computing 9 Chapter 4 A Historical Review of Silicon Photonic Development 11 4.1 Waveguides 11 4.2 Modulator 12 4.3 Photodetectors 13 4.4 Light Sources 14 4.5 Packaging and Coupling 15 4.6 System Integration 16 4.7 Latest Status 17 Chapter 5 Case Study of Commercial PICs Design Automation 18 5.1 Design Methodology of EDA 18 5.2 PICs Design Automation evolving along with EDA 19 5.3 Critical Issue for PICs Development 20 5.4 Design Methodology for PICs Design Automation 22 5.5 Case study: Introduction of PIC Studio 24 Chapter 6 Conclusion 30 6.1 Trend and Challenges for Silicon Photonic 30 6.2 Opportunities for PICs Design Automation 30 6.3 Scope and Limitations 31 References and Citations 32

    Alt, S. (2016). Photonic Integrated Circuit (PIC) Device Structures: Background, Fabrication Ecosystem, Relevance to Space Systems Applications, and Discussion of Related Radiation Effects.
    Alur, R., & Dill, D. L. (1994). A theory of timed automata. Theoretical Computer Science, 126(2), 183-235. https://doi.org/https://doi.org/10.1016/0304-3975(94)90010-8
    Asghari, M. (2008, 2008/02/24). Silicon Photonics: A Low Cost Integration Platform for Datacom and Telecom Applications.OSA Technical Digest (CD) Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, San Diego, California.
    Benveniste, A., & Berry, G. (1991). The synchronous approach to reactive and real-time systems. Proceedings of the IEEE, 79(9), 1270-1282. https://doi.org/10.1109/5.97297
    Bernabé, S., Porte, H., Roux, C., Blind, P., Kopp, C., Lasfargues, G., Borel, I., Gindre, P., Gabette, L., & Nicolas, S. (2012). In-plane pigtailing of silicon photonics device using “semi-passive” strategies. 2012 4th Electronic System-Integration Technology Conference,
    Boeuf, F., Cremer, S., Temporiti, E., Fere, M., Shaw, M., Vulliet, N., Orlando, B., Ristoiu, D., Farcy, A., Pinguet, T., Mekis, A., Masini, G., Sun, P., Chi, Y., Petiton, H., Jan, S., Manouvrier, J. R., Baudot, C., Maitre, P. L., . . . Verga, L. (2015, 22-26 March 2015). Recent progress in Silicon Photonics R&D and manufacturing on 300mm wafer platform. 2015 Optical Fiber Communications Conference and Exhibition (OFC),
    Bogaerts, W., & Chrostowski, L. (2018). Silicon Photonics Circuit Design: Methods, Tools and Challenges. Laser & Photonics Reviews, 12(4), 1700237. https://doi.org/https://doi.org/10.1002/lpor.201700237
    Branin, F. H. (1967). Computer methods of network analysis. Proceedings of the IEEE, 55(11), 1787-1801. https://doi.org/10.1109/PROC.1967.6010
    Brayton, R. K., Hachtel, G. D., Hemachandra, L. A., Newton, A. R., & Sangiovanni-Vincentelli, A. L. M. (1982). A comparison of logic minimization strategies using ESPRESSO: An APL program package for partitioned logic minimization. Proceedings of the International Symposium on Circuits and Systems,
    Brayton, R. K., Hachtel, G. D., & Sangiovanni-Vincentelli, A. L. (1981). A survey of optimization techniques for integrated-circuit design. Proceedings of the IEEE, 69(10), 1334-1362. https://doi.org/10.1109/PROC.1981.12170
    Brayton, R. K., Rudell, R., Sangiovanni-Vincentelli, A., & Wang, A. R. (1987). MIS: A multiple-level logic optimization system. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 6(6), 1062-1081.
    Bryant, R. E. (1995, 5-9 Nov. 1995). Binary decision diagrams and beyond: enabling technologies for formal verification. Proceedings of IEEE International Conference on Computer Aided Design (ICCAD),
    Bryant, R. E. (2018). Handbook of Model Checking.
    Bushnell, M., & Agrawal, V. (2006). Essentials of Electronic Testing for Digital, Memory and Mixed-Signal VLSI Circuits. Springer US. https://books.google.com.tw/books?id=UTrtBwAAQBAJ
    Chan, S. P., Png, C. E., Lim, S. T., Reed, G. T., & Passaro, V. M. (2005). Single-mode and polarization-independent silicon-on-insulator waveguides with small cross section. Journal of Lightwave Technology, 23(6), 2103.
    Chapter 1 - Introduction to Microelectronics. (2015). In H. Kaeslin (Ed.), Top-Down Digital VLSI Design (pp. 1-40). Morgan Kaufmann. https://doi.org/https://doi.org/10.1016/B978-0-12-800730-3.00001-0
    Chapter 2 - Field-Programmable Logic. (2015). In H. Kaeslin (Ed.), Top-Down Digital VLSI Design (pp. 41-61). Morgan Kaufmann. https://doi.org/https://doi.org/10.1016/B978-0-12-800730-3.00002-2
    Chapter 3 - From Algorithms to Architectures. (2015). In H. Kaeslin (Ed.), Top-Down Digital VLSI Design (pp. 63-177). Morgan Kaufmann. https://doi.org/https://doi.org/10.1016/B978-0-12-800730-3.00003-4
    Chatterjee, A., Mongkolkachit, P., Bhuva, B., & Verma, A. (2003). All Si-based optical interconnect for interchip signal transmission. IEEE Photonics Technology Letters, 15(11), 1663-1665. https://doi.org/10.1109/LPT.2003.818684
    Chawla, B., Gummel, H., & Kozak, P. (1975). MOTIS-An MOS timing simulator. IEEE Transactions on Circuits and Systems, 22(12), 901-910. https://doi.org/10.1109/TCS.1975.1084003
    Chen, X., Milosevic, M. M., Stanković, S., Reynolds, S., Bucio, T. D., Li, K., Thomson, D. J., Gardes, F., & Reed, G. T. (2018). The Emergence of Silicon Photonics as a Flexible Technology Platform. Proceedings of the IEEE, 106(12), 2101-2116. https://doi.org/10.1109/JPROC.2018.2854372
    Ching Eng, P., Seong Phun, C., Soon Thor, L., & Reed, G. T. (2004). Optical phase modulators for MHz and GHz modulation in silicon-on-insulator (SOI). Journal of Lightwave Technology, 22(6), 1573-1582. https://doi.org/10.1109/JLT.2004.827655
    Chiu, W.-C., Chang, C.-C., Wu, J.-M., Lee, M.-C. M., & Shieh, J.-M. (2011). Optical phase modulators using deformable waveguides actuated by micro-electro-mechanical systems. Optics letters, 36(7), 1089-1091. https://doi.org/10.1364/OL.36.001089
    Chmielak, B., Waldow, M., Matheisen, C., Ripperda, C., Bolten, J., Wahlbrink, T., Nagel, M., Merget, F., & Kurz, H. (2011). Pockels effect based fully integrated, strained silicon electro-optic modulator. Optics Express, 19(18), 17212-17219.
    Chopde, A., Chougule, T., Chandakavathe, P., Chavare, R., & Dharangutte, N. (2023, 12-13 April 2023). System on chip design challenges and it's solutions. International Conference on Communication, Embedded-VLSI Systems for Electric Vehicle (ICCEVE 2023),
    Chrostowski, L., Flueckiger, J., Lin, C., Hochberg, M., Pond, J., Klein, J., Ferguson, J., & Cone, C. (2014). Design methodologies for silicon photonic integrated circuits. Proceedings of SPIE - The International Society for Optical Engineering, 8989. https://doi.org/10.1117/12.2047359
    Clarke, E. (2008). The Birth of Model Checking. https://doi.org/10.1007/978-3-540-69850-0_1
    Coudert, O. (1994). Two-level logic minimization: an overview. Integration, 17(2), 97-140. https://doi.org/https://doi.org/10.1016/0167-9260(94)00007-7
    Coudert, O., & Madre, J. C. (1990, 11-15 Nov. 1990). A unified framework for the formal verification of sequential circuits. 1990 IEEE International Conference on Computer-Aided Design. Digest of Technical Papers,
    Dakss, M., Kuhn, L., Heidrich, P., & Scott, B. (1970). Grating coupler for efficient excitation of optical guided waves in thin films. Applied Physics Letters, 16(12), 523-525.
    Darringer, J. A., Joyner, W. H., Berman, C. L., & Trevillyan, L. (1981). Logic Synthesis Through Local Transformations. IBM Journal of Research and Development, 25(4), 272-280. https://doi.org/10.1147/rd.254.0272
    Davies, D. E., Burnham, M., Benson, T. M., Kassim, N. M., & Seifouri, M. (1989, 3-5 Oct. 1989). Optical waveguides and SIMOX characterisation. IEEE SOS/SOI Technology Conference,
    De Lyon, T., Rajavel, R., Jensen, J., Wu, O., Johnson, S., Cockrum, C., & Venzor, G. (1996). Heteroepitaxy of HgCdTe (112) infrared detector structures on Si (112) substrates by molecular-beam epitaxy. Journal of Electronic Materials, 25, 1341-1346.
    de Lyon, T. J., Baumgratz, B., Chapman, G., Gordon, E., Hunter, A. T., Jack, M. D., Jensen, J. E., Johnson, W., Johs, B. D., & Kosai, K. (1999). Epitaxial growth of HgCdTe 1.55-um avalanche photodiodes by molecular beam epitaxy. Photodetectors: Materials and Devices IV,
    De Micheli, G. (1986). Performance-oriented synthesis in the Yorktown silicon compiler. Int. Conf. on Computer-Aided Design,
    Electronic Design Automation Market. (2023). (PMRREP31694). (Market Study on Electronic Design Automation: North America and East Asia Key Markets in This Space, Issue. P. M. Research. https://www.persistencemarketresearch.com/market-research/electronic-design-automation-eda-market.asp
    Fang, A. W., Park, H., Cohen, O., Jones, R., Paniccia, M. J., & Bowers, J. E. (2006). Electrically pumped hybrid AlGaInAs-silicon evanescent laser. Optics Express, 14(20), 9203-9210.
    Feng, D., Liao, S., Liang, H., Fong, J., Bijlani, B., Shafiiha, R., Luff, B. J., Luo, Y., Cunningham, J., Krishnamoorthy, A. V., & Asghari, M. (2012). High speed GeSi electro-absorption modulator at 1550 nm wavelength on SOI waveguide. Optics Express, 20(20), 22224-22232. https://doi.org/10.1364/OE.20.022224
    Gardes, F. Y., Reed, G. T., Emerson, N. G., & Png, C. E. (2005). A sub-micron depletion-type photonic modulator in Silicon On Insulator. Optics Express, 13(22), 8845-8854. https://doi.org/10.1364/OPEX.13.008845
    Gardes, F. Y., Thomson, D. J., Emerson, N. G., & Reed, G. T. (2011). 40 Gb/s silicon photonics modulator for TE and TM polarisations. Optics Express, 19(12), 11804-11814. https://doi.org/10.1364/OE.19.011804
    Gautier, T., Le Guernic, P., & Besnard, L. (1987). Signal: A declarative language for synchronous programming of real-time systems. Springer.
    Gill, D. M., Proesel, J. E., Xiong, C., Orcutt, J. S., Rosenberg, J. C., Khater, M. H., Barwicz, T., Assefa, S., Shank, S. M., Reinholm, C., Ellis-Monaghan, J., Kiewra, E., Kamlapurkar, S., Breslin, C. M., Green, W. M. J., Haensch, W., & Vlasov, Y. A. (2015). Demonstration of a High Extinction Ratio Monolithic CMOS Integrated Nanophotonic Transmitter and 16 Gb/s Optical Link. IEEE Journal of Selected Topics in Quantum Electronics, 21(4), 212-222. https://doi.org/10.1109/JSTQE.2014.2381468
    Goel, P., & Rosales, B. C. (1981, 29 June-1 July 1981). PODEM-X: An Automatic Test Generation System for VLSI Logic Structures. 18th Design Automation Conference,
    Guiney, M., & Leavitt, E. (2006, 24-27 Jan. 2006). An introduction to openaccess an open source data model and API for IC design. Asia and South Pacific Conference on Design Automation, 2006.,
    Halbwachs, N., Caspi, P., Raymond, P., & Pilaud, D. (1991). The synchronous data flow programming language LUSTRE. Proceedings of the IEEE, 79(9), 1305-1320.
    Harel, D. (1987). Statecharts: a visual formalism for complex systems. Science of Computer Programming, 8(3), 231-274. https://doi.org/https://doi.org/10.1016/0167-6423(87)90035-9
    Hashimoto, A., & Stevens, J. (1971). Wire routing by optimizing channel assignment within large apertures Proceedings of the 8th Design Automation Workshop, Atlantic City, New Jersey, USA. https://doi.org/10.1145/800158.805069
    Huang, W., Xu, C., Chu, S.-T., & Chaudhuri, S. K. (1992). The finite-difference vector beam propagation method: analysis and assessment. Journal of Lightwave Technology, 10(3), 295-305.
    IBM. What are large language models (LLMs)? https://www.ibm.com/topics/large-language-models
    Intelligence, Y. (2023). Silicon Photonics 2023. https://www.yolegroup.com/product/report/silicon-photonics-2023/
    Jambois, O., Gourbilleau, F., Kenyon, A. J., Montserrat, J., Rizk, R., & Garrido, B. (2010). Towards population inversion of electrically pumped Er ions sensitized by Si nanoclusters. Optics Express, 18(3), 2230-2235. https://doi.org/10.1364/OE.18.002230
    Justice, J., Bower, C., Meitl, M., Mooney, M. B., Gubbins, M. A., & Corbett, B. (2012). Wafer-scale integration of group III–V lasers on silicon using transfer printing of epitaxial layers. Nature Photonics, 6(9), 610-614. https://doi.org/10.1038/nphoton.2012.204
    Kaniewski, J., & Piotrowski, J. (2004). InGaAs for infrared photodetectors. Physics and technology. Opto-electronics Review, 12.
    Karp, R. (1972). Reducibility Among Combinatorial Problems (Vol. 40). https://doi.org/10.1007/978-3-540-68279-0_8
    Keyvaninia, S., Verstuyft, S., Van Landschoot, L., Lelarge, F., Duan, G. H., Messaoudene, S., Fedeli, J. M., De Vries, T., Smalbrugge, B., Geluk, E. J., Bolk, J., Smit, M., Morthier, G., Van Thourhout, D., & Roelkens, G. (2013). Heterogeneously integrated III-V/silicon distributed feedback lasers. Optics letters, 38(24), 5434-5437. https://doi.org/10.1364/OL.38.005434
    Kirkpatrick, S., Gelatt, C., & Vecchi, M. (1983). Optimization by Simulated Annealing. Science (New York, N.Y.), 220, 671-680. https://doi.org/10.1126/science.220.4598.671
    Krishnamoorthy, A. V., Chirovsky, L. M. F., Hobson, W. S., Leibengath, R. E., Hui, S. P., Zydzik, G. J., Goossen, K. W., Wynn, J. D., Tseng, B. J., Lopata, J., Walker, J. A., Cunningham, J. E., & Asaro, L. A. D. (1999). Vertical-cavity surface-emitting lasers flip-chip bonded to gigabit-per-second CMOS circuits. IEEE Photonics Technology Letters, 11(1), 128-130. https://doi.org/10.1109/68.736418
    Krstic, A., & Cheng, K. T. T. Delay Testing for VLSI Circuits.
    Kuon, I., & Rose, J. (2007). Measuring the Gap Between FPGAs and ASICs. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 26(2), 203-215. https://doi.org/10.1109/TCAD.2006.884574
    Kurdi, B., & Hall, D. (1988). Optical waveguides in oxygen-implanted buried-oxide silicon-on-insulator structures. Optics letters, 13(2), 175-177.
    Kurshan, R. (2018). Transfer of Model Checking to Industrial Practice. In (pp. 763-793). https://doi.org/10.1007/978-3-319-10575-8_23
    Lee, C. Y. (1961). An Algorithm for Path Connections and Its Applications. IRE Transactions on Electronic Computers, EC-10(3), 346-365. https://doi.org/10.1109/TEC.1961.5219222
    Lee, E. A., & John, I. (1999). Overview of the ptolemy project.
    Leiserson, C. E., & Pinter, R. Y. (1983). Optimal Placement for River Routing. SIAM Journal on Computing, 12(3), 447-462. https://doi.org/10.1137/0212029
    Lentz, K. P., & Ulrich, E. (1993, 19-22 April 1993). Multiple-domain concurrent and comparative simulation. Proceedings ETC 93 Third European Test Conference,
    Lever, L., Hu, Y., Myronov, M., Liu, X., Owens, N., Gardes, F. Y., Marko, I. P., Sweeney, S. J., Ikonić, Z., Leadley, D. R., Reed, G. T., & Kelsall, R. W. (2011). Modulation of the absorption coefficient at 1.3 μm in Ge/SiGe multiple quantum well heterostructures on silicon. Optics letters, 36(21), 4158-4160. https://doi.org/10.1364/OL.36.004158
    Levitan, S. P. (2007, 4-8 June 2007). A. Richard Newton, 1951 - 2007. 2007 44th ACM/IEEE Design Automation Conference,
    Li, C., Bai, R., Shafik, A., Tabasy, E. Z., Wang, B., Tang, G., Ma, C., Chen, C. H., Peng, Z., Fiorentino, M., Beausoleil, R. G., Chiang, P., & Palermo, S. (2014). Silicon Photonic Transceiver Circuits With Microring Resonator Bias-Based Wavelength Stabilization in 65 nm CMOS. IEEE Journal of Solid-State Circuits, 49(6), 1419-1436. https://doi.org/10.1109/JSSC.2014.2321574
    Liao, L., Liu, A., Rubin, D., Basak, J., Chetrit, Y., Nguyen, H., Cohen, R., Izhaky, N., & Paniccia, M. (2007). 40 Gbit/s silicon optical modulator for high-speed applications. Electronics Letters, 43(22), 1196-1197.
    Lim, A. E. J., Song, J., Fang, Q., Li, C., Tu, X., Duan, N., Chen, K. K., Tern, R. P. C., & Liow, T. Y. (2014). Review of Silicon Photonics Foundry Efforts. IEEE Journal of Selected Topics in Quantum Electronics, 20(4), 405-416. https://doi.org/10.1109/JSTQE.2013.2293274
    Lines, M. E., & Glass, A. M. (2001). Principles and applications of ferroelectrics and related materials. Oxford university press.
    Liu, A., Jones, R., Liao, L., Samara-Rubio, D., Rubin, D., Cohen, O., Nicolaescu, R., & Paniccia, M. (2004). A high-speed silicon optical modulator based on a metal–oxide–semiconductor capacitor. Nature, 427(6975), 615-618. https://doi.org/10.1038/nature02310
    Man, H. D., Rabaey, J., Six, P., & Claesen, L. (1986). Cathedral-II: A Silicon Compiler for Digital Signal Processing. IEEE Design & Test of Computers, 3(6), 13-25. https://doi.org/10.1109/MDT.1986.295047
    Maruyama, T., Okumura, T., & Arai, S. (2006). Direct Wafer Bonding of GaInAsP/InP Membrane Structure on Silicon-on-Insulator Substrate. Japanese Journal of Applied Physics, 45, 8717-8718. https://doi.org/10.1143/JJAP.45.8717
    Masood, A., Pantouvaki, M., Lepage, G., Verheyen, P., Campenhout, J. V., Absil, P., Thourhout, D. V., & Bogaerts, W. (2013, 28-30 Aug. 2013). Comparison of heater architectures for thermal control of silicon photonic circuits. 10th International Conference on Group IV Photonics,
    McFarland, M. C., Parker, A. C., & Camposano, R. (1990). The high-level synthesis of digital systems. Proceedings of the IEEE, 78(2), 301-318. https://doi.org/10.1109/5.52214
    McMillan, K. L. (1993). Symbolic Model Checking. In K. L. McMillan (Ed.), Symbolic Model Checking (pp. 25-60). Springer US. https://doi.org/10.1007/978-1-4615-3190-6_3
    Milošević, M. M., Matavulj, P. S., Timotijević, B. D., Reed, G. T., & Mashanovich, G. Z. (2008). Design rules for single-mode and polarization-independent silicon-on-insulator rib waveguides using stress engineering. Journal of Lightwave Technology, 26(13), 1840-1846.
    Nair, R., Se June, H., Liles, S., & Villani, R. (1982, 14-16 June 1982). Global Wiring on a Wire Routing Machine. 19th Design Automation Conference,
    Narasimha, A., Analui, B., Liang, Y., Sleboda, T. J., Abdalla, S., Balmater, E., Gloeckner, S., Guckenberger, D., Harrison, M., Koumans, R. G. M. P., Kucharski, D., Mekis, A., Mirsaidi, S., Song, D., & Pinguet, T. (2007). A Fully Integrated 4 × 10-Gb/s DWDM Optoelectronic Transceiver Implemented in a Standard 0.13 μm CMOS SOI Technology. IEEE Journal of Solid-State Circuits, 42(12), 2736-2744. https://doi.org/10.1109/JSSC.2007.908713
    Nedeljkovic, M., Soref, R., & Mashanovich, G. Z. (2011). Free-Carrier Electrorefraction and Electroabsorption Modulation Predictions for Silicon Over the 1–14- μm Infrared Wavelength Range. IEEE Photonics Journal, 3(6), 1171-1180. https://doi.org/10.1109/JPHOT.2011.2171930
    Newton, A. R., & Sangiovanni-Vincentelli, A. L. (1984). Relaxation-Based Electrical Simulation. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 3(4), 308-331. https://doi.org/10.1109/TCAD.1984.1270089
    Ngatchou, P., Zarei, A., & El-Sharkawi, A. (2005, 6-10 Nov. 2005). Pareto Multi Objective Optimization. Proceedings of the 13th International Conference on, Intelligent Systems Application to Power Systems,
    Ousterhout, J. K., Hamachi, G. T., Mayo, R. N., Scott, W. S., & Taylor, G. S. (1985). The Magic VLSI Layout System. IEEE Design & Test of Computers, 2(1), 19-30. https://doi.org/10.1109/MDT.1985.294681
    Park, H., Fang, A. W., Kodama, S., & Bowers, J. E. (2005). Hybrid silicon evanescent laser fabricated with a silicon waveguide and III-V offset quantum wells. Optics Express, 13(23), 9460-9464. https://doi.org/10.1364/OPEX.13.009460
    Penfield, P., & Rubinstein, J. (1981, 29 June-1 July 1981). Signal Delay in RC Tree Networks. 18th Design Automation Conference,
    Pérez-Galacho, D., Marris-Morini, D., Stoffer, R., Cassan, E., Baudot, C., Korthorst, T., Boeuf, F., & Vivien, L. (2016). Simplified modeling and optimization of silicon modulators based on free-carrier plasma dispersion effect. Optics Express, 24(23), 26332-26337.
    Pfister, G. F. (1982, 14-16 June 1982). The Yorktown Simulation Engine: Introduction. 19th Design Automation Conference,
    Pillage, L. T., & Rohrer, R. A. (1990). Asymptotic waveform evaluation for timing analysis. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 9(4), 352-366. https://doi.org/10.1109/43.45867
    Pinguet, T., Denton, S., Gloeckner, S., Mack, M., Masini, G., Mekis, A., Pang, S., Peterson, M., Sahni, S., & De Dobbelaere, P. (2018). High-volume manufacturing platform for silicon photonics. Proceedings of the IEEE, 106(12), 2281-2290.
    Potop-Butucaru, D., Edwards, S. A., & Berry, G. (2007). Compiling esterel (Vol. 86). Springer Science & Business Media.
    Rahim, A., Spuesens, T., Baets, R., & Bogaerts, W. (2018). Open-access silicon photonics: Current status and emerging initiatives. Proceedings of the IEEE, 106(12), 2313-2330.
    Reed, G. T., & Knights, A. P. (2004). Silicon photonics: an introduction. John Wiley & Sons.
    Rickman, A. (2014). The commercialization of silicon photonics. Nature Photonics, 8(8), 579-582. https://doi.org/10.1038/nphoton.2014.175
    Rickman, A., & Reed, G. (1994). Silicon-on-insulator optical rib waveguides: loss, mode characteristics, bends and y-junctions. IEE Proceedings-Optoelectronics, 141(6), 391-393.
    Rito, P., López, I. G., Petousi, D., Zimmermann, L., Kroh, M., Lischke, S., Knoll, D., Micusik, D., Awny, A., Ulusoy, A. C., & Kissinger, D. (2016). A Monolithically Integrated Segmented Linear Driver and Modulator in EPIC 0.25- μm SiGe:C BiCMOS Platform. IEEE Transactions on Microwave Theory and Techniques, 64(12), 4561-4572. https://doi.org/10.1109/TMTT.2016.2618392
    Rivest, R. L. (1982, 14-16 June 1982). The "PI" (Placement And Interconnect) System. 19th Design Automation Conference,
    Roth. (1986). Minimization by the D Algorithm. IEEE Transactions on Computers, C-35(5), 476-478. https://doi.org/10.1109/TC.1986.1676790
    Sangiovanni-Vincentelli, A. (2003). The tides of EDA. IEEE Design & Test of Computers, 20(6), 59-75. https://doi.org/10.1109/MDT.2003.1246165
    Settaluri, K. T., Lin, S., Moazeni, S., Timurdogan, E., Sun, C., Moresco, M., Su, Z., Chen, Y.-h., Leake, G., LaTulipe, D., McDonough, C., Hebding, J., Coolbaugh, D. D., Watts, M. R., & Stojanović, V. M. (2015). Demonstration of an optical chip-to-chip link in a 3D integrated electronic-photonic platform. ESSCIRC Conference 2015 - 41st European Solid-State Circuits Conference (ESSCIRC), 156-159.
    Shah, J. (2005). DARPA'S EPIC program: electronic and photonic integrated circuits on Si. IEEE International Conference on Group IV Photonics, 2005. 2nd,
    Shainline, J., & Xu, J. (2007). Silicon as an emissive optical medium. Laser & Photonics Reviews, 1, 334-348. https://doi.org/10.1002/lpor.200710021
    Shekhar, S., Bogaerts, W., Chrostowski, L., Bowers, J. E., Hochberg, M., Soref, R., & Shastri, B. J. (2024). Roadmapping the next generation of silicon photonics. Nature Communications, 15(1), 751. https://doi.org/10.1038/s41467-024-44750-0
    Siew, S. Y., Li, B., Gao, F., Zheng, H. Y., Zhang, W., Guo, P., Xie, S. W., Song, A., Dong, B., Luo, L. W., Li, C., Luo, X., & Lo, G. Q. (2021). Review of Silicon Photonics Technology and Platform Development. Journal of Lightwave Technology, 39(13), 4374-4389. https://doi.org/10.1109/JLT.2021.3066203
    Society, I. C., Electrical, I. o., & Section, E. E. P. (1985). The Future of Test: International Test Conference, 1985 Proceedings, November 19, 20, 21, 1985. IEEE Computer Society Press. https://books.google.com.tw/books?id=B_tVAAAAMAAJ
    Soref, R., & Bennett, B. (1987). Electrooptical effects in silicon. IEEE Journal of Quantum Electronics, 23(1), 123-129. https://doi.org/10.1109/JQE.1987.1073206
    Soref, R. A. (1993). Silicon-based optoelectronics. Proceedings of the IEEE, 81(12), 1687-1706. https://doi.org/10.1109/5.248958
    Soref, R. A., & Lorenzo, J. P. (1985). Single-crystal silicon: a new material for 1.3 and 1.6 μm integrated-optical components. Electronics Letters, 21, 953-954.
    Soref, R. A., Schmidtchen, J., & Petermann, K. (1991). Large single-mode rib waveguides in GeSi-Si and Si-on-SiO/sub 2. IEEE Journal of Quantum Electronics, 27(8), 1971-1974.
    Stepanov, S., & Ruschin, S. (2005). Phase and amplitude modulation of light by light in silicon-on-insulator waveguides. Electronics Letters, 41, 477-478. https://doi.org/10.1049/el:20058449
    Sun, C., Wade, M., Georgas, M., Lin, S., Alloatti, L., Moss, B., Kumar, R., Atabaki, A. H., Pavanello, F., Shainline, J. M., Orcutt, J. S., Ram, R. J., Popović, M., & Stojanović, V. (2016). A 45 nm CMOS-SOI Monolithic Photonics Platform With Bit-Statistics-Based Resonant Microring Thermal Tuning. IEEE Journal of Solid-State Circuits, 51(4), 893-907. https://doi.org/10.1109/JSSC.2016.2519390
    Systems, L. D. (2023). Innovates semiconductors with EDA. Latitude Design Systems. https://www.latitudeds.com
    Szygenda, S. A., & Thompson, E. W. (1975). Digital Logic Simulation in a Time-Based, Table-Driven Environment. Computer, 8(3), 24-36. https://doi.org/10.1109/C-M.1975.218898
    Tang, C. K., Reed, G. T., Walton, A. J., & Rickman, A. G. (1994). Low-loss, single-model optical phase modulator in SIMOX material. Journal of Lightwave Technology, 12(8), 1394-1400. https://doi.org/10.1109/50.317527
    Trimberger, S. M. (2015). Three Ages of FPGAs: A Retrospective on the First Thirty Years of FPGA Technology. Proceedings of the IEEE, 103(3), 318-331. https://doi.org/10.1109/JPROC.2015.2392104
    Wang, L.-T., Chang, Y.-W., & Cheng, K.-T. T. (2009). Electronic design automation: synthesis, verification, and test. Morgan Kaufmann.
    Washburn, W. F. (1983). Dr. Franklin H. Branin, Jr. (1919–1982). IEEE Circuits & Systems Magazine, 5(2), 23-23. https://doi.org/10.1109/MCAS.1983.6323920
    Weisberg, D. E. (2022). History of CAD. History.
    Williams, T. W. (1981). LEVEL SENSITIVE SCAN DESIGN (LSSD)
    SYSTEM (USA Patent No. A. International Business Machines Corporation, N. Y.
    Wim Bogaerts, P. D., Martin Fiers, Antonio Ribeiro, Michael Vanslembrouck. (2012). Silicon photonics integrated design.
    Xiao, X., Li, M., Wang, L., Chen, D., Yang, Q., & Yu, S. (2017, 2017/03/19). High Speed Silicon Photonic Modulators.OSA Technical Digest (online) Optical Fiber Communication Conference, Los Angeles, California.
    Yoshimura, T., & Kuh, E. S. (1982). Efficient Algorithms for Channel Routing. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 1(1), 25-35. https://doi.org/10.1109/TCAD.1982.1269993
    Zimmermann, L., Schröder, H., Dumon, P., Bogaerts, W., & Tekin, T. (2008). Epixpack-advanced smart packaging solutions for silicon photonics. Proceedings of the 14th European Conference on Integrated Optics,

    QR CODE