簡易檢索 / 詳目顯示

研究生: 黃竹如
Huynh Truc Nhu
論文名稱: 3,10-Bis(Bromo-Methyl)-5Phenacene吸附在銀(111)和金(111)介面上晶格和電子結構之研究
Study of the lattice and electronic structure at the interface of 3,10-Bis(Bromo-Methyl)-5Phenacene adsorbed on Ag(111) and Au(111)
指導教授: 唐述中
Tang, Shu-Jung
口試委員: 鄭澄懋
Cheng, Cheng-Maw
皮敦文
Pi, Tun-Wen
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 64
中文關鍵詞: 3,10-Bis(Bromo-Methyl)-5Phenacene
外文關鍵詞: 3,10-Bis(Bromo-Methyl)-5Phenacene
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 有機場效電晶體可應用在有機發光顯示器、感應器、記憶體等等,而石墨烯奈米帶結構扮演著關鍵的角色。在這篇論文裡,我們使用3,10-Bis(Bromo-Methyl)-[5]Phenacene (BMPMB)分子在兩種不同的基底:金(111)和銀(111)上,形成二維的長鏈結構。BMPMB分子裡擁有Picience結構在3和10的位置附加了兩個溴-甲基,該分子因其物理和化學性質:高穩定性、高電洞移動力和巨大的光學能隙而被研究和採用。利用角解析光電子能譜(ARPES)、低能量電子繞射(LEED)和掃描穿隧式電子顯微鏡(STM),我們研究在基底介面所形成的分子和電子結構。在常溫下,我們成功在兩種基底上實現長鏈狀的分子結構,並利用掃描穿隧式電子顯微鏡圖像和光電子能譜得到驗證;值得注意的是,在BMPMB吸附在銀(111)基底的樣品上,我們得到極為整齊排列的低能量電子繞射圖案,意味著在表面形成了一個複雜而有趣的二維排列相。雖然在金(111)基底上沒有觀察到相對應整齊排列的清晰低能量電子繞射圖案,當樣品退火到約170 °C時我們觀察到了相變:由長鏈轉變為六角形結構。儘管金和銀有相同的晶體結構和相近的晶格常數,單層BMPMB吸附在它們之上有截然不同的電子和晶格性質。而我們仍需要進一步研究達成完全的Wurtz反應所需要的條件。


    Nanoribbons structure plays a crucial role in organic field-effect transistors (OFETs), which have application in organic light-emitting displays, sensors and electronic memory devices, etc. In this report, we utilized 3,10-Bis(Bromo-Methyl)-[5] Phenacene (BMPMB) molecule to form 2D structural elongated chains on two different substrates; Au(111) and Ag(111). BMPMB molecule involves Picience structure appended with two Bromine-Methyl groups at positions of $3$ and $10$. It was studied and employed due to its physical and chemical properties, such as good stability, high hole mobilities, and large optical band gap. Using angle-resolved photoemission spectroscopy (ARPES), low electron energy diffraction (LEED), and scanning tunneling microscope (STM), the lattice and electronic structures at the interface were investigated. At room temperature, long-chains like molecular structures were achieved at the surfaces of both two substrates, as revealed by STM images and photoemission spectra. It is note worth noting that clear and sharp LEED patterns were observed in the case of BMPMB adsorbed on Ag(111) substrate, indicating an interesting phase with highly ordered $2$D array formed on the surface. Although no corresponding sharp LEED patterns were observed on Au(111)substrate to indicate high ordered structure, a phase transition occurred when we annealed the sample to about 170 Celsius degrees; the long chains changed to hexagonal structure. Despite that Ag and Au have the same crystal structure and almost the same lattice constant, the lattice and electronic properties of BMPMB monolayer adsorbed on them are very different. However, further investigations to figure out conditions to achieve Wurtz reaction completely.

    1 Introduction . . . . . . . . . . . . . . . . . . . . . 1 2 Knowledge background . . . . . . . . . . . . . . . . . . . . . 4 2.1 Electronic levels and energy diagrams of organic semiconductors . . . . . . . 4 2.2 Factors determining the interfacial electronic structure . . . . . . . . . . . . 5 2.2.1 Physisorption interaction (push-back effect) . . . . . . . . . . . . . . 5 2.2.2 The electronegativity of the adsorbatess . . . . . . . . . . . . . . . . 6 2.2.3 Charge transfer between the metal and the organic molecule . . . . . 7 2.3 Wurtz coupling reaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3 Technical methods 9 3.1 Ultra high vacuum system . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.2 K-cell evaporator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113.3 Low energy electron diffraction (LEED) . . . . . . . . . . . . . . . . . . . . 13 3.4 Angle-resolved photoemission spectroscopy (ARPES) . . . . . . . . . . . . 16 3.5 Scanning tunneling microscopy (STM) . . . . . . . . . . . . . . . . . . . . . 18 3.6 Synchrotron radiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 4 Materials and experimental process 20 4.1 3;10-Bis(Bromo-Methyl)-[5] Phenacene(BMPMB) . . . . . . . . . . . . . . 20 4.2 Silver (111) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4.3 Gold (111) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 4.4 Experimental process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 5 Results 27 5.1 One monolayer of BMPMB thin-film adsorbed on Ag(111) . . . . . . . . . . 27 5.1.1 The molecular arrangement in reciprocal and real space . . . . . . . . 27 5.1.2 The formation at the interface . . . . . . . . . . . . . . . . . . . . . 31 5.1.3 The electronic properties of the molecule . . . . . . . . . . . . . . . 32 5.2 One monolayer BMPMB thin-film adsorbed on Au(111) . . . . . . . . . . . 41 5.2.1 The molecular arrangement in reciprocal and real space . . . . . . . . 41 5.2.2 The formation at the interface . . . . . . . . . . . . . . . . . . . . . 445.2.3 The electronic properties of the molecule . . . . . . . . . . . . . . . 45 6 Discussion . . . . . . . . . . . . . . . . . . . . . 52 7 Future work . . . . . . . . . . . . . . . . . . . . . 59

    [1] Stephen R. Forrest, Organic Electronics: Foundations to Applications, 2020,9780198529729.
    [2] J. Mei, Y. Diao, A.L. Appleton, L. Fang, and Z. Bao, Integrated Materials Design of Organic Semiconductors for Field-Effect Transistors, J. Am. Chem. Soc. 2013, 135, 6724−6746.
    [3] A.Y. Amin, A. Khassanov, K. Reuter, T. Meyer-Friedrichsen, and M. Halik, LowVoltage Organic Field Effect Transistors with a 2-Tridecyl[1]benzothieno[3;2 − b][1] benzothiophene Semiconductor Layer, — J. Am. Chem. Soc. 2012, 134, 16548 −16550.
    [4] H. Minemawari, T. Yamada, H. Matsui, J. Tsutsumi, S. Haas, R. Chiba, R. Kumai, and T. Hasegawa, Inkjet printing of single-crystal films, Nature 2011, 475, 364−367.
    [5] T. Lv, L. Pan, X. Liu, T. Lu, G. Zhu, Z. Suna, and C.Q. Sunb, One-step synthesis of CdS-TiO2-chemically reduced graphene oxide composites via microwave-assisted reaction for visible-light photocatalytic degradation of methyl orange, Catal. Sci. Technol., 2012, 2, 754−758.
    [6] Z. Wang, L. Huang, L. Chi, Organic Semiconductor Field-Effect Transistors Based on Organic-2D Heterostructures, Frontiers Materials, 2020, 00295.
    [7] K.S. Novoselov1, A. Mishchenko1, A. Carvalho, A.H.C. Neto 2D materials and van der Waals heterostructures, Science, 2016, 353, 9439−9439.
    [8] X. Liu, M.C. Hersam, Interface Characterization and Control of 2D Materials and Heterostructures, Adv.Mater. 2018, 30, 1801586.
    [9] Antoine Kahn, Fermi level, work function and vacuum level, Mater. Horiz., 2016,3, 7−10.
    [10] R. Otero, A.L.V de Parga, J.M. Gallego, Electronic, structural and chemical effects of charge-transfer at organic/inorganic interfaces, Surface Science Reports, 2017.
    [11] S. Braun, W.R. Salaneck, and M. Fahlman Energy-Level Alignment at Organic/Metal and Organic/Organic Interfaces, Advanced Materials, 2009 21, 1450−1472.
    [12] A.Gusain, R.M. Faria and P.B. Miranda, Polymer Solar Cells—Interfacial Processes Related to Performance Issues, Front. Chem, 2019, 7, 61.
    [13] M.A Forou and J.L. Reynolds The Wurtz cross-coupling reaction revisited, Main Group Metal Chemistry, 1994; Vol.17, 6.
    [14] R. Jana, T.P. Pathak, and M.S. Sigman Advances in Transition Metal (Pd,Ni,Fe)-Catalyzed Cross-Coupling Reactions Using Alkyl organometallics as Reaction Partners, Chem. Rev. 2011, 111, 3, 1417–1492.
    [15] M. Heyrman, I. Nuta, C. Chatilon, Knudsen cell, High Temperature Mass Spectrometry, Materials Chemistry, 2010.
    [16] M.A. Van Hove, W.H. Weinberg, Chi-Ming Chan, Low-Energy Electron Diffraction, Springer Series in Surface Sciences, Vol.6.
    [17] Baiqing Lv1, T. Qian, H. Ding, Angle-resolved photoemission spectroscopy and its application to topological materials, Nature Reviews Physics, 2019, 609–626.
    [18] N.Yagi, 8.02 - Synchrotron Radiation, Comprehensive Biomedical Physics, 2014.
    [19] G. C. Baldwin, D. W. Kerst Origin of synchrotron radiation, Physics Today,1975, 28, 1, 9.
    [20] K. Codling , Applications of synchrotron radiation (ultraviolet spectral light source), Rep. Prog. Phys. 1973, 36, 541−624.
    [21] Q. Xin, S. Duhm, F. Bussolotti, K. Akaike, Y. Kubozono, H. Aoki, T. Kosugi, S. Kera, N. Ueno, Accessing Surface Brillouin Zone and Band Structure of Picene Single Crystals, Phys. Rev. Lett., 2012, 108, 226401.
    [22] D.R. Smith, F.R. Fickett Low-Temperature Properties of Silver, J. Res. Natl. Inst. Stand. Technol. 1995, 100, 119.
    [23] J.D. Kiely, J.E. Houston Nanomechanical properties of Au(111), (001), and (110) surfaces, Phys. Rev. B, 1998, 57, 12588.
    [24] P.M. Agrawal, B.M. Rice, D.L. Thompson, Predicting trends in rate parameters
    for self-diffusion on FCC metal surfaces, Surface Science, 2002, 515, 21–35.
    [25] German Hoffmann, Surface State Physics, Department of Physics, National Sting Hua University, Taiwan.
    [26] Dr Theodoros Papadopoulos, Faculty of Science and Engineering, University of Chester, US

    QR CODE