簡易檢索 / 詳目顯示

研究生: 蔡柏聖
Tsai, Bo Sheng
論文名稱: 完備流形上的四頂點定理
A note on four-vertex theorem on complete manifolds
指導教授: 宋瓊珠
Sung, Chiung Jue
口試委員: 高淑蓉
蕭育如
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系
Department of Mathematics
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 31
中文關鍵詞: 四頂點定理曲率頂點
外文關鍵詞: four-vertex theorem, curvature, vertex
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們證明了平面上的四頂點定理能夠被推廣到任意簡單連通的二維非負常曲率流形上。另一方面,在特定形式的非簡單連通流形上,我們給出四頂點定理無法被推廣的反例。


    We show that the Four-Vertex Theorem can be extended on any two-dimensional simply connected space form with non-negative sectional curvature. On the other hand, we give counterexamples to show that the Four-Vertex Theorem can not be extended on a type of non-simply connected space form.

    1. Introduction - page 3 2. Preliminaries - page 4 3. The correspondence theorem of vertices - page 7 4. Examples for extension of the Four-Vertex Theorem - page 18 5. Counterexamples on non-simply connected space forms - page 21 Appendix: A Theorem of Jackson - page 25 References - page 30

    [1] G. Cairns, M. Ozdemir and E. H. Tjaden, A counterexample to a conjecture of U. Pinkall, Topology,
    31 (1992), 557-558.

    [2] M. P. do Carmo, Differential Geometry of Curves and Surfaces, Pearson Education Taiwan Ltd.(2009)

    [3] M. P. do Carmo, Riemannian Geometry, Bosron, Mass. (1992)

    [4] M. Ghomi, Vertices of closed curves in Riemannian surfaces, arXiv:1006.4182v1 math.DG 21 Jun 2010.

    [5] M. Ghomi, A Riemannian four vertex theorem for surfaces with boundary, Proc. Amer. Math. Soc. 139 (2011), 293-303.

    [6] S. B. Jackson, The Four-Vertex Theorem for Surfaces of Constant Curvature, Amer. J. Math. 67(4) (1945), 563-582.

    [7] S. I. R. Costa and M. Firer. Four-or-more-vertex theorems for constant curvature manifolds, in Real And Complex Singularities (Sao Carlos, 1998), volume 412 of Chapman Hall/CRC Res. Notes Math. (2000), pages 164-172.

    [8] U. Pinkall, On the four-vertex theorem, Aequnt. Math. 34 (1987), 221-230.

    [9] S. Sasaki, The minimum number of points of inflexion of closed curves in the projective plane, Tohoku Math. J. (2) (1957), 9:113-117.

    [10] M. Umehara, 6-vertex theorem for closed planar curve which bounds an immersed surface with nonzero genus, Nagoya Math. J. (1994), 134:75-89.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE