研究生: |
林言謙 Lin, Yan-Cian |
---|---|
論文名稱: |
應變引致先進半導體元件效能提升之力學解析推導與驗證 Mechanical-Based Analytical Derivation and Verification for the Performance Enhancement of Strain-Induced Advanced Semiconductor Device |
指導教授: |
李昌駿
Lee, Chang-Chun |
口試委員: |
葉孟考
Yen, Meng-Kao 張書通 Chang, Shu-Tong 徐烱勛 Hsu, Jiong-Shiun |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 中文 |
論文頁數: | 172 |
中文關鍵詞: | 金氧半場效電晶體 、應變工程技術 、源/汲極晶格不匹配應力 、淺溝槽內應力 、力學解析解 、載子遷移率 、電性分析 |
外文關鍵詞: | MOSFET, Strain Engineering, S/D Lattice Mismatch Stress, STI Internal Stress, Mechanical-Based Analytical Solution, Mobility, Electrical Analysis |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
肇因於半導體技術的迅速發展,前瞻晶片內之元件目前已隨著莫爾定律微縮至奈米尺度。其中,互補式金氧半導體(CMOS)結構長期皆為整體積體電路之主流技術。然而,在節點技術急遽微縮以迎合效能提升的需求下,亦面臨在製程與效能等方面之巨大挑戰。因此,發展出具有金屬閘極/高介電係數之介電層(Metal Gate/High-k Dielectric)、應變工程技術、具高載子遷移率之新式材料,以及下一世代之三維鰭式元件結構。在研發與設計階段,若需製造與量測元件效能,通常需要大量的技術與時間成本投入,故若能夠簡單快速並準確預估元件效能,為半導體元件研發與競爭力提升之重要關鍵之技術。
有鑑於此,本研究中建立力學解析模型,用於計算載子傳輸通道之應力分佈。藉由導入應變工程技術之元件,產生機械應變致使傳輸通道之材料能帶結構改變,進而提升半導體元件之電性表現。應變工程之主要應力源主要包含,金氧半場效電晶體(MOSFET)結構其源/汲極(Source/Drain)晶格不匹配應力和淺溝槽隔離層(STI)內含殘留應力。利用此研究推導之解析模型估算上述諸項應力源對於元件通道所產生之應力分佈與力學響應,並以目前主流技術之結構尺寸與材料種類為參數予以探討。此外,藉有限元素模擬分析,驗證該解析模型的準確性。此解析解以半導體元件為推導架構,分別以一維通道方向,以及二維通道與厚度方向之力學理論為核心,推導MOSFET結構在應力源作用下之力學響應。
另一方面,本研究亦針對數個先進半導體元件,包含對於矽基、鍺基、三五族基等高載子遷移率之元件進行探討。藉由壓阻效應之應力-電阻率關係進一步量化通道之載子遷移率增益。同時,進一步地計算短通道CMOS之工作電流,以電性表現說明元件效能的實際增益。本研究所發展解析模型之應力與電性解析結果,能夠有效地幫助半導體元件進行更有效率的設計,期以做為半導體產業使用應變工程技術時之研究參考。
Due to the quickly development of semiconductor technology, the components whithin the innovative chip have been narrowed down to the nanometer scale in accordance with Mohr’s law. To meet the demand of operated enhancement, the mainstream of Metal-Oxide Semiconductor Field-Effect-Transistor (MOSFET) architectures at advanced nodal technology is to face huge challenges in terms of processes and performance. Consequently, both the high-k/metal gate structures combined with the use of strained engineering and novel materials having high carrier mobility are presented. In the stages of R&D and design, the consumption of technology capability and requirement of time cost investment are usually expected to manufacture and measure the electrical performances of concerned devices. Accordingly, it becomes the key of boosting up the R&D competitiveness of semiconductor devices if their related performances could be easily, quickly and accurately estimated.
For the above-mentioned reason, an analytical model based on mechanics is established in this study to calculate the stress distribution of the carrier transport channel. Through the mechanical strain induced by the strained components within MOSFET devices, the band structure of channel material is changed to promote their electrical performances. The foregoing stress resources considered in the proposed analytical model are composed of lattice-mismatch stress of source/drain (S/D) and intrinsic stressed shallow trench isolation (STI). The analytical model derived in this research is used to estimate the distribution and response of stress components of device channel. In addition, several parametric analyses for the structural dimnesion and material systems of the mainstream and candidate technologies are implemented. To demonstrate the accuracy of the presented model, the calculated results are compared with finite element simulation.
On the other hand, the rapid prognosis ability of the proposed model is performed on Si, Ge, and group III-V based of nanoscaled transistors under specifically designed stressors. The S/D dependence of performance variety for all considered device materials can be directly estimated by changing the designed S/D length substituted into the analytical model. Moreover, the variations in induced mobility gain are further quantified by using corresponding stress-piezoresistance relation and the electrical performances of devices are consequently interpreted. In conclusion, the analytic methodlogy with regard to stress-induced device performance prediction presented in this study is useful to speed up the design period of novel semiconductor devices. All the results shown in this research are expected to be the reference guideline as strained engineering technology is taken into account.
1. J. Robertson, “High dielectric constant gate oxides for metal oxide Si transistors,” Reports on Progress in Physics, Vol. 69, No. 2, pp.327-396, 2006.
2. R. Geiger, T. Zabel, and H. Sigg, “Group IV direct band gap photonics: methods, challenges, and opportunities,” Frontiers in Materials, Vol.2, 2005.
3. L. Bin, “Advanced Silicon and Germanium Transistors for Future P-channel MOSFET Applications,” PhD Thesis, Singapore ,2013.
4. M. Chu, Y. Sun, U. Aghoram, and S. E. Thompson, “Strain: A solution for higher carrier mobility in nanoscale MOSFETs,” Annual Review of Materials Research, Vol. 39, pp. 203-229, 2009.
5. S. E. Thompson, M. Armstrong, C. Auth, M. Alavi, M. Buehler, R. Chau, S. Cea, T. Ghani, G. Glass, T. Hoffman, C. H. Jan, C. Kenyon, J. Klaus, K. Kuhn, Z. Ma, B. Mcintyre, K. Mistry, A. Murthy, B. Obradovic, R. Nagisetty, P. Nguyen, S. Sivakumar, R. Shaheed, L. Shifren, B. Tufts, S. Tyagi, M. Bohr, and Y. E. Mansy, “A 90-nm logic technology featuring strainedsilicon,” IEEE Transactions on Electron Devices, Vol. 51, No. 11, pp. 1790–1797, Nov. 2004.
6. V. Sverdlov, “Strain-induced effects in advanced MOSFETs,” Springer Science & Business Media, 2011.
7. J. Welser, J. L. Hoyt, and J. F. Gibbons, “Electron mobility enhancement in strained-Si N-type metal-oxide-semiconductor field-effect transistors,” IEEE Electron Device Letters, Vol. 15, pp. 100-102, 1994.
8. A. Lochtefeld, and D. A. Antoniadis, “Investigating the relationship between electron mobility and velocity in deeply scaled NMOS via mechanical stress,” IEEE Electron Device Letters, Vol. 22, pp. 591-593, 2001.
9. D. K. Nayak, and S. K. Chun, “Low-field hole mobility of strained-Si on (100) Si1-xGex substrate,” Applied Physics Letters, Vol. 64, pp. 2514-2516, 1994.
10. S. Takagi, J. L. Hoyt, J. J. Welser, and J. F. Gibbons, “Comparative study, of phononlimited mobility of two-dimensional electrons in strained and unstrained-Si metal–oxide–semiconductor field-effect transistors,” Journal of Applied Physics, Vol. 80, pp. 1567-1577, 1996.
11. M. L. Lee, and E. A. Fitzgerald, “Hole mobility enhancements in nanometer-scale strained-silicon heterostructures grown on Ge-rich relaxed Si1-xGex,” Journal of Applied Physics, Vol. 94, pp. 2590-2596, 2003.
12. K. Rim, J. Chu, H. Chen, K.A. Jenkins, T. Kanarsky, K. Lee, A. Mocuta, H. Zhu, R. Roy, J. Newbury, J. Ott. K. Petrarca, P. Mooney, D. Lacey, S. Koester, K. Chan. D. Boyd, M. Ieong, and H. S. Wong, “Characteristics and device design of sub-100-nm strained-Si N- and PMOSFETs,” 2002 Symposium on VLSI Technology, pp. 98–99, 2002.
13. G. Eneman, E. Simoen, P. Verheyen, and K. De Meyer, “Gate influenceon the layout sensitivity of Si1−xGex S/D and Si1−yCy S/D transistorsincluding an analytical model,” IEEE Transactions on Electron Devices, Vol. 55, No. 10, pp. 2703-2711, Oct. 2008.
14. D. Zhang, B.Y. Nguyen, T. White, B. Goolsby, T. Nguyen, V. Dhandapani, J. Hildreth, M. Foisy, V. Adams, Y. Shiho, A. Thean, D. Theodore, M. Canonico, S. Zollner, S. Bagchi, S. Murphy, R. Rai, J. Jiang, M. Jahanbani, R. Noble, M. Zavala, R. Cotton, D. Eades, S. Parsons, P. Montgomery, A. Martinez, B. Winstead, M. Mendicino, J. Cheek, J. Liu, P. Grudowski, N. Ranami, P. Tomasini, C. Arena, C. Werkhoven, H. Kirby, C.H. Chang, C.T. Lin, H.C. Tuan, Y.C. See, S. Venkatesan, V. Kolagunta, N. Cave, J. Mogab, “Embedded SiGe S/ D PMOS on Thin Body SOI Substrate with Drive Current Enhancement,” IEEE 2005 Symposium on VLSI Technology, pp. 26-27, 2005.
15. W. S. Liao, Y. G. Liaw, M. C. Tang, K. M. Chen, S. Y. Huang, C. Y. Peng, and C. W. Liu, “PMOS hole mobility enhancement through SiGe conductive channel and highly compressive ILD SiNx stressing layer,” IEEE Electron Device Letters, Vol. 29, No. 1, pp. 86-88, 2008.
16. Kah-Wee Ang, King-Jien Chui, Vladimir Bliznetsov, Yihua Wang , Lai-Yin Wong, Chih-Hang Tung, N. Balasubramanian, Ming-Fu Li, Ganesh Samudra, and Yee-Chia Yeo, “Thin body silicon on insulator N MOSFET with silicon carbon source/drain regions for performance enhancement,” IEEE International Electron Devices Meeting, pp. 497-500, 2005.
17. T. Ohshima, K. K. Lee, Y. Ishida1, K. Kojima1, Y. Tanaka1, T. Takahashi1, M. Yoshikawa, H. Okumura1, K. Arai1, and T. Kamiya, “The electrical characteristics of metal oxide semiconductor field effect transistors fabricated on cub ic silicon carbide,” Journal of Applied Physics, Vol. 42, No. 6B, pp. L625-L627, 2003.
18. S. Ike, Y. Moriyama, M. Kurosawa, N. Taoka, O. Nakatsuka, Y. Imai, S. Kimura, T. Tezuka, S. Zaima, “Formation and characterization of locally strained Ge1-xSnx/Ge microstructures,” Thin Solid Films, Vol. 557, pp. 164-168, 2014.
19. B. Vincent, Y. Shimura, S. Takeuchi, T. Nishimura, G. Eneman, A. Firrincieli, J. Demeulemeester, A. Vantomme, T. Clarysse, O. Nakatsuka, S. Zaima, J. Dekoster, M. Caymax, R. Looa, “Characterization of GeSn materials for future Ge pMOSFETs source/drain stressors,” Microelectronic Engineering, Vol. 88, No. 4, pp. 342-346, 2011.
20. 王木俊;王哲麒;何青松;李敏鴻;阮弼群;林世杰;林成利;林薏菁;翁士元;張書通;陳冠能;陳裕華;陳鴻文;曾靖揮;楊健國;葉文冠;鄒議漢;廖忠賢;劉傳璽;鄭晃忠;鄭裕庭;賴朝松, “新世代積體電路製程技術,” 東華書局, 2011.
21. D. Zhang, B.Y. Nguyen, T. White, B. Goolsby, T. Nguyen, V. Dhandapani, J. Hildreth, M. Foisy, V. Adams, Y. Shiho, A. Thean, D. Theodore, M. Canonico, S. Zollner, S. Bagchi, S. Murphy, R. Rai, J. Jiang, M. Jahanbani, R. Noble, M. Zavala, R. Cotton, D. Eades, S. Parsons, P. Montgomery, A. Martinez, B. Winstead, M. Mendicino, J. Cheek, J. Liu, P. Grudowski, N. Ranami, P. Tomasini, C. Arena, C. Werkhoven, H. Kirby, C.H. Chang, C.T. Lin, H.C. Tuan, Y.C. See, S. Venkatesan, V. Kolagunta, N. Cave, J. Mogab, “Embedded SiGe S/D PMOS on thin body SOI substrate with drive current enhancement,” 2005 IEEE Symposium on VLSI Technology, 2005.
22. M. T. Currie, C. W. Leitz, T. A. Langdo, G. Taraschi, and E. A. Fitzgerald, “Carrier mobilities and process stability of strained Si n-and p-MOSFETs on SiGe virtual substrates,” Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, Vol. 19, No.6, pp.2268-2279, 2001.
23. Y. Liu, O. Gluschenkov, J. Li, A. Madan, A. Ozcan, B. Kim, T. Dyer, A. Chakravarti, K. Chan, C. Lavoie, I. Popova, T. Pinto, N. Rovedo, Z. Luo, R. Loesing, W. Henson, and . Rim, “Strained Si channel MOSFETs with embedded silicon carbon formed by solid phase epitaxy,” 2007 IEEE Symposium on VLSI Technology, pp. 44-45, 2007.
24. B. Vincent, F. Gencarelli, H. Bender, C. Merckling, B. Douhard, D. H. Petersen, O. Hansen, H. H. Henrichsen, J. Meersschaut, W. Vandervorst, M. Heyns, R. Loo, and M. Caymax, “Undoped and in-situ B doped GeSn epitaxial growth on Ge by atmospheric pressure chemical vapor deposition,” Applied Physics Letters, Vol. 99, No. 15, pp. 152-103, 2011.
25. B. Vincent, Y. Shimura, S. Takeuchi, T. Nishimura, G. Eneman, A. Firrincieli, J. Demeulemeester, A. Vantomme, T. Clarysse, O. Nakatsuka, S. Zaima, J. Dekoster, M. Caymax, R. Loo, “Characterization of GeSn materials for future Ge pMOSFETs source/drain stressors,” Microelectronic Engineering, Vol. 88, No. 4, pp. 342-346, 2011.
26. C. C. Lee, and P. C. Huang, “Layout Study of Strained Ge-Based PMOSFETs Integrated with S/D GeSn Alloy and CESL by Using Process-Oriented Stress Simulations,” IEEE Transactions on Electron Devices, Vol. 65, No. 11, pp. 4975-4981, Nov. 2018.
27. H. C. Chin, X. Gong, X. Liu, Y. C. Yeo, “Lattice-mismatched In0. 4Ga0. 6As Source/Drain stressors with In Situ doping for strained In0. 53 Ga0. 47 as channel n-MOSFETs,” IEEE Electron Device Letters, Vol. 8, 2009.
28. F. Cacho, S. Orain, G. Cailletaud, H. Jaouen, “A constitutive single crystal model for the silicon mechanical behavior: Applications to the stress induced by silicided lines and STI in MOS technologies,” Microelectronics Reliability, Vol. 47, No. 3, pp. 161-167, 2007.
29. H. Tsuno, K. Anzai, M. Matsumura, S. Minami, A. Honjo, H. Koike, Y. Hiura, A. Takeo, W. Fu, Y. Fukuzaki, M. Kanno, H. Ansai and N. Nagashima, “Advanced analysis and modeling of MOSFET characteristic fluctuation caused by layout variation,” 2007 IEEE Symposium on VLSI Technology, 2007.
30. C. Gallon, G. Reimbold, Gérard Ghibaudo, R. A. Bianchi, R. Gwoziecki, S. Orain, E. Robilliart, C. Raynaud, and H. Dansas, “Electrical analysis of mechanical stress induced by STI in short MOSFETs using externally applied stress,” IEEE Transactions on Electron Devices, Vol. 51, No. 8, pp. 1254-1261, 2004.
31. J. Innocenti, C. Rivero ; F. Julien ; J. M. Portal ; Q. Hubert ; G. Bouton ; P. Fornar, L. Lopez, P. Masson, S. Niel, A. Regmer, “NMOS drive current enhancement by reducing mechanical stress induced by Shallow Trench Isolation,” 2015 IEEE International Conference on Electron Devices and Solid-State Circuits, 2015
32. R. Li, L. Yu, H. Xin, Y. Dong, K. Tao, and C. Wang, “A comprehensive study of reducing the STI mechanical stress effect on channel-width-dependent Idsat,” Semiconductor Science and Technology, Vol. 22, No.12, pp. 1292-1297, 2007.
33. M. Belyanskya, N. Klymko, R. Conti, and D. Chidambarrao, “Study of silicon strain in shallow trench isolation,” Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, Vol. 28, No. 4, pp. 829-833, 2010.
34. Y. M. Sheu, S. J. Yang, C. C. Wang, C. S. Chang, L. P. Huang, T. Y. Huang, M. J. Chen, and C. H. Diaz, “Modeling mechanical stress effect on dopant diffusion in scaled MOSFETs,” IEEE Transactions on Electron Devices, Vol. 52, No. 1, pp. 30-38, 2004.
35. M. Miyamoto, H. Ohta, Y. Kumagai, Y. Sonobe, K. Ishibashi, and Y. Tainaka, “Impact of reducing STI-induced stress on layout dependence of MOSFET characteristics,” IEEE Transactions on Electron Devices, Vol. 51, No.3, pp.440-443, 2004.
36. C. C. Lee, C. H. Liu, R. H. Deng, H. W. Hsu, K. N. Chiang, “Investigation of consequent process induced stress for N type metal oxide semiconductor field effect transistor with a sunken shallow trench isolation pattern,” Thin Solid Films, Vol. 557, pp. 323-328, Apr. 2014.
37. K. T. Lee, C. Y. Kang, O. S. Yoo, C. D. Young, G. B., H. K. Park, J. M. Lee, H. S. Hwang, B. H. Lee, H. D. Lee1, and Y. H. Jeong, “A comparative study of reliability and performance of strain engineering using CESL stressor and mechanical strain,” 2008 IEEE International Reliability Physics Symposium, pp. 306-309, 2008.
38. G. Eneman, P. Verheyen, A. D. Keersgieter, M. Jurczak, and K. D. Meyer, “Scalability of stress induced by contact-etch-stop layers: A simulation study,” IEEE Transactions on Electron Devices, Vol. 54, No. 6, pp. 1446-1453, 2007.
39. K. N. Chiang, C. H. Chang, and C. T. Chang, “Local strain effects in Si/SiGe/Si islands on oxide,” Applied Physics Letters, Vol. 87, No. 19, pp. Nov. 2005.
40. Y. Liu, O. Gluschenkov, J. Li, A. Madan, A. Ozcan, B. Kim, T. Dyer, A. Chakravarti, K. Chan, C. Lavoie, I. Popova, T. Pinto, N. Rovedo, Z. Luo, R. Loesing, W. Henson, and K. Rim, “Strained Si Channel MOSFETs with Embedded Silicon Carbon Formed by Solid Phase Epitaxy,” 2007 IEEE Symposium on VLSI Technology, 2007
41. A. Shimizu, K. Hachimine, N. Ohki, H. Ohta, M. Koguchi, Y. Nonaka, H. Sato, and F. Ootsuka, “Local mechanical-stress control (LMC): A new technique for CMOS-performance enhancement,” 2001 IEEE International Electron Devices Meeting, IEEE, 2001.
42. G. Eneman, E. Simoen, P. Verheyen, and K. De Meyer, “Gate influenceon the layout sensitivity of Si1−xGex S/D and Si1−yCy S/D transistorsincluding an analytical model,” IEEE Transactions on Electron Devices, Vol. 55, No. 10, pp. 2703–2711, Oct. 2008.
43. K. Rim, J. Welser, J. L. Hoyt, and J. F. Gibbons, “Enhanced hole mobilities in surface-channel strained-Si p-MOSFETs,” 1995 IEEE International Electron Devices Meeting, IEEE, 1995.
44. Q. Liu, M. Vinet, J. Gimbert, N. Loubet, R. Wacquez, L. Grenouillet, Y. Le Tiec, A. Khakifirooz, T. Nagumo, K. Cheng, H. Kothari, D. Chanemougame, F. Chafik, S. Guillaumet, J. Kuss, F. Allibert, G. Tsutsui, J. Li, P. Morin, S. Mehta, R. Johnson, L.F. Edge, S. Ponoth, T. Levin, S. Kanakasabapathy, B. Haran, H. Bu, J. L. Bataillon, O. Weber, O. Faynot, E. Josse, M. Haond, W. Kleemeier, M. Khare, T. Skotnicki, S. Luning, B. Doris, M. Celik, R. Sampson, “High performance UTBB FDSOI devices featuring 20nm gate length for 14nm node and beyond,” 2013 IEEE International Electron Devices Meeting. IEEE, 2013.
45. J. Jacob, “Power electronics: Principles and applications,” Cengage Learning, 2001.
46. T. Ytterdal, Y. Cheng, and T. A. Fjeldly, "MOSFET device physics and operation," Device Modeling for Analog and RF CMOS Circuit Design, 2003.
47. S. M. Kang, and Y. Leblebici, “CMOS digital integrated circuits,” Tata McGraw-Hill Education, 2015.
48. M. T. Currie, C. W. Leitz, T. A. Langdo, G. Taraschi, and E. A. Fitzgerald, "Carrier mobilities and process stability of strained Si n-and p-MOSFETs on SiGe virtual substrates." Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, Vol. 16, No. 6, pp.2268-2279, 2001.
49. J. Gaspar, J. Gutmann, B. Lemke, and O. Paul, “Nonlinear piezoresistance of silicon at large stresses,” 2011 IEEE 24th International Conference on Micro Electro Mechanical Systems, 2011.
50. H. H. Gatzen, V. Saile, and J. Leuthold, “Micro and Nano Fabrication,” Springer-Verlag Berlin Heidelberg, 2016.
51. E. Kasper, A. Schuh, G. Bauer, B. Hollander, H. Kibbel, “Test of Vegard's law in thin epitaxial SiGe layers,” Journal of Crystal Growth, Vol. 157, No. 14, pp. 68-72, Dec. 1995.
52. Z. Charifi, N. Bouarissa, “The effect of the violation of Vegard’s law on the optical bowing in Si1-xGex alloys,” Journal of Crystal Growth, Vol. 234, No. 6, pp. 493-497, Oct. 1997.
53. O. C. Zienkiewicz, and R. L. Taylor, “The finite element method: solid mechanics,” Butterworth-heinemann, Vol. 2, 2000.
54. Öchsner, Andreas. Computational statics and dynamics. Singapore: Springer, 2016.
55. T. Y. Han, G. L. Luo, C. C. Cheng, C. H. Ko, C. H. Wann, C. C. Kei, C. N. Hsiao, and C. H. Chien, “Experimental Demonstration of (111)-Oriented GaAs Metal–Oxide–Semiconductor Field-Effect-Transistors with Hetero-Epitaxial Ge Source/Drain,” ECS Journal of Solid State Science and Technology, Vol. 3, No.4, pp. 86-90, 2014.
56. C. C. Lee, P. C. Huang, and Y. C. Lin, “Analytical Model Developed for Precise Stress Estimation of Device Channel within Advanced Planar MOSFET Architectures,” IEEE Transactions on Electron Devices, Vol. 67, No. 4, pp. 1498-1505, Apr. 2020.
57. J. A. Del Alamo, “Nanometre-scale electronics with III–V compound semiconductors,” Nature, Vol. 479, No. 7373, pp. 317–323, Nov. 2011.
58. S. Thompson, G. Sun, Y. Sung Choi, and T. Nishida, “Uniaxialprocess-induced strained-Si: Extending the CMOS roadmap,” IEEE Transactions on Electron Devices, Vol. 53, No. 5, pp. 1010–1020, May 2006.
59. S. Suthram et al., “Strain additivity in III-V channels for CMOSFETs beyond 22nm technology node,” 2008 IEEE Symposium on VLSI Technology, Jun. 2008, pp. 182–183.
60. A. Nainani et al., “Study of piezoresistance under unixial stress for technologically relevant III-V semiconductors using wafer bending experiments,” Applied Physics Letters, vol. 96, no. 24, Jun. 2010
61. M. Kobayashi, T. Irisawa, B. Magyari-Kope, K. Saraswat, H. S. P. Wong, and Y. Nishi, “Uniaxial stress engineering for high performance Ge NMOSFETs,” IEEE Transactions on Electron Devices, Vol. 57, No. 5, pp. 1037–1046, May 2010.
62. K. Tapily, J. E. Jakes, D. S. Stone, P. Shrestha, D. Gu, H. Baumgart, and A. A. Elmustafa, “Nanoindentation investigation of HfO2 and Al2O3 films grown by atomic layer deposition,” Jornal of The Electrochemical Society, Vol. 155, No. 7, pp.545-551, 2008.
63. B. H. Lee, V. R. Anderson, and S. M. George, “Growth and properties of hafnicone and HfO2/Hafnicone nanolaminate and alloy films using molecular layer deposition techniques,” ACS Applied Material Interfaces, Vol. 6, pp. 16880-16887, 2014.
64. C. C. Lee, K. S. Kao, Leon Lin, J. Y. Chang, F. J. Leu, Y. L. Lu, and T. C. Chang, “Investigation of Pre-Bending Substrate Design in Packaging Assembly of an IGBT Power Module,” Microelectronic Engineering, Vol. 120, pp. 106-113, May 2014.
65. K. W. Ang, K. J. Chui, A. Madan, L. Y. Wong, C. H. Tung, N. Balasubramanian, M. F. Li, G. S. Samudra, and Y. C. Yeo, “Strained thin-body p-MOSFET with condensed silicon-germanium source/drain for enhanced drive current performance,” IEEE Electron Device Letters, Vol. 28, Issue. 6, pp. 509-512, June 2007.
66. J. L. Hoyt, H. M. Nayfeh, S. Eguchi, I. Aberg, G. Xia, T. Drake, E.A. Fitzgerald, D. A. Antoniadis, “Strained silicon MOSFET technology.” 2002 IEEE International Electron Devices Meeting, Dec. 2002.
67. S. E. Thompson, M. Armstrong, C. Auth, M. Alavi, M. Buehler, R. Chau, S. Cea, T. Ghani, G. Glass, T. Hoffman, C. H. Jan, C. Kenyon, J. Klaus, K. Kuhn, Z. Ma, B. Mcintyre, K. Mistry, A. Murthy, B. Obradovic, R. Nagisetty, P. Nguyen, S. Sivakumar, R. Shaheed, L. Shifren, B. Tufts, S. Tyagi, M. Bohr, and Y. E. Mansy, “A 90-nm logic technology featuring strainedsilicon,” IEEE Transactions on Electron Devices, Vol. 51, No. 11, pp. 1790–1797, Nov. 2004.
68. V. K. Arora, D. C. Y. Chek, and M. L. P. Tan, “The role of ballistic mobility and saturation velocity in performance evaluation of a nano-CMOS circuit,” IEEE 2009 International Conference on Emerging Trends in Electronic and Photonic Devices & Systems, 2009.
69. H. Y. Chen, C. Y. Chang, C. C. Huang, T. X. Chung, S. D. Liu, J. R Hwang, Y. H. Liu, Y. J. Chou, H. J. Wu, K. C. Shu, C. K. Huang, J. W You, J. J. Shin, C. K. Chen, C. H. Lin, J. W. Hsu, B. C. Perng, P. Y. Tsai, C. C. Chen, J.H. Shieh, H. J. Tao, S.C. Chen, T. S. Gau, and F. L. Yang, “Novel 20nm hybrid SOI/bulk CMOS technology with 0.183〖μm〗^2 6T-SRAM cell by immersion lithography,” 2008 IEEE Symposium on VLSI Technology, 2005.
70. M. T. Currie, C. W. Leitz, T. A. Langdo, G. Taraschi, and E. A. Fitzgerald, “Carrier mobilities and process stability of strained Si n-and p-MOSFETs on SiGe virtual substrates.” Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, Vol. 19, pp.2268-2279, 2001.