研究生: |
藍冠旻 Lan, Guan-Min |
---|---|
論文名稱: |
鐵電氧化鉿鋯鰭式電晶體非揮發性記憶體特性之研究 Investigation on Ferroelectric HfZrO2 FinFET Non-volatile Memory Characterization |
指導教授: |
吳永俊
Wu, Yung-Chun 林育賢 Lin, Yu-Hsien |
口試委員: |
侯福居
Hou, Fu-Ju 朱鵬維 Chu, Peng-Wei |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2022 |
畢業學年度: | 110 |
語文別: | 中文 |
論文頁數: | 63 |
中文關鍵詞: | 鐵電 、氧化鉿鋯 、鰭式電晶體 、非揮發性記憶體 |
外文關鍵詞: | Ferroelectric, HfZrO2, FinFET, Non-volatile Memory |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
半導體產業日新月異,目前在邏輯與記憶體元件尺寸縮小的方面受到嚴峻的挑戰,為了解決尺寸微縮過程中所遇到的問題,以及考量成本與利潤關係,除了改變結構之外,亦可藉由材料的變化來提升元件之電特性。此次研究重點鐵電記憶體(Ferroelectric Random Access Memory, FeRAM)中之鐵電電晶體(Ferroelectric Field Effect Transistor, FeFET)能夠展現出具有低功耗、低操作電壓、高可靠度的優勢,並且可以有效地應用到CMOS製程中,因此其成為新興記憶體中備受矚目的研究方向之一。
本篇論文中,透過在絕緣層上覆矽(Silicon-on-Insulator, SOI)與鐵電層之間沉積一層氮氧化鋁(AlON)以作為介面層(Interfacial Layer, IL),藉此提升鐵電電晶體的記憶窗口(Memory Window, MW),並結合鰭式場效電晶體結構(FinFET),來有效提升電場以及閘極的控制能力。在量測方面,當使用直流(Direct Current, DC)正反掃的情況下,施加直流電壓為 ±4V時,元件之MW可達到1.5V;而當施加脈衝電壓為 ±5V的情況下,寫入抹除的脈衝寬度僅需100 ns,且根據元件之臨界電壓,使用直流進行小範圍電壓下的讀取,可有效降低元件在讀取時所造成的破壞性行為,此時該記憶體之MW更可達到1.59V。另外,利用Sentaurus 3D TCAD模擬軟體以觀察鰭式結構轉角電場增強的現象。本次研究成功製造出鐵電氧化鉿鋯鰭式電晶體之非揮發性記憶體,為避免不同尺寸下之元件的影響,以下元件電特性皆由通道寬度(Fin Width, FW)為60nm以及閘極長度(Gate Length, LG)為100nm的元件尺寸中量測而得。而在耐用度(Endurance)方面,經過10的5次方次的寫入與抹除之循環後,MW仍保持在1.09V,而在耐久度(Retention)方面,則是經過10的4次方秒後,MW仍無明顯的衰退。
此研究中的鐵電氧化鉿鋯鰭式電晶體非揮發性記憶體,除了與現今的FinFET製程相容之外,並具有較大的MW、較快的寫入與抹除之速度,以及良好的可靠度,因此Fe-FinFET在未來具有學術價值與商業量產潛力。
The semiconductor industry is changing with each passing day, and it is currently facing severe challenges in the reduction of logic and memory devices size. In order to solve the problems encountered in the process of size reduction and to consider the relationship between cost and profit, in addition to changing the structure, it can also be improved by changes in materials to promote the electrical characteristics of the component. The focus of this research is that the ferroelectric field effect transistor (FeFET) in the ferroelectric random access memory (FeRAM) can show the advantages of low power consumption, low operating voltage, and high reliability, also can be effectively applied to the CMOS process, so it has become one of the high-profile research directions in the emerging memory.
In this thesis, a layer of aluminum oxynitride (AlON) is deposited between the silicon-on-insulator (SOI) and the ferroelectric layer as the interfacial layer (IL) to improve the memory window (MW) of the Ferroelectric Field Effect Transistor, also combined with the FinFET structure, can effectively improve the electric field and gate control ability. In terms of measurement, when the direct current (DC) is used for positive and negative sweeping, applied the DC voltage is ±4V, the MW of the element can reach 1.5V. When the pulse voltage is ±5V, the pulse width of the program and erase only needs 100 ns, and depending on the threshold voltage of the device, using DC to read a small range of voltage can effectively reduce the destructive behavior. Meanwhile, the MW of the memory can reach 1.59V. In addition, Sentaurus 3D TCAD simulation software was used to observe the phenomenon of electric field enhancement at the corners of the fin structure to enhance FeFET performance. This research successfully produced a ferroelectric HfZrO2 FinFET non-volatile memory. In order to avoid the influence of components of different sizes, the electrical characteristics of the following components are all determined by the fin width of 60nm and the gate length of 100nm component size to measure. In terms of endurance, after 105 cycles of programming and erasing, the MW remained at 1.09V, while in terms of retention, after 104 seconds, the MW was still not noticeable decline.
The ferroelectric HfZrO2 FinFET non-volatile memory in this study is compatible with the current FinFET process and has a larger MW, faster programming and erasing speed, and excellent reliability. Therefore, Fe-FinFET is also a research direction worthy of an in-depth discussion and has potential mass production in the future.
第一章
[1-1] Christopher Henderson, "Info Tracks Semitracks Monthly Newsletter," April Newsletter, 2011.
[1-2] D.-H. Kang, D.-H. Ahn, K.-B. Kim, J. Webb, and K.-W. Yi, "One-dimensional heat conduction model for an electrical phase change random access memory device with an 8F2 memory cell (F= 0.15μm)," Journal of applied physics, vol. 94, no. 5, pp. 3536-3542, 2003.
[1-3] S.-H. Hong, B.-J. Bae, and H. Lee, "Fast switching behavior of nanoscale Ag6In5Sb59Te30 based nanopillar type phase change memory," Nanotechnology, vol. 21, no. 2, pp. 025703, 2009.
[1-4] T.-Y. Lee, S.-S. Yim, D. Lee, M.-H. Lee, D.-H. Ahn, and K.-B. Kim, "Separate domain formation in Ge2Sb2Te5–SiOx mixed layer," Applied physics letters, vol. 89, no. 16, pp. 163503, 2006.
[1-5] R. Kojima, and N. Yamada, "Acceleration of crystallization speed by Sn addition to Ge–Sb–Te phase-change recording material," Japanese Journal of Applied Physics, vol. 40, no. 10R, pp. 5930, 2001.
[1-6] H.-S. P. Wong, S. Raoux, S. Kim, J. Liang, J. P. Reifenberg, B. Rajendran, M. Asheghi, and K. E. Goodson, "Phase change memory," Proceedings of the IEEE, vol. 98, no. 12, pp. 2201-2227, 2010.
[1-7] D. Nguyen, and F. Irom, "Radiation effects on MRAM." pp. 1-4.
[1-8] F. Pan, S. Gao, C. Chen, C. Song, and F. Zeng, "Recent progress in resistive random access memories: Materials, switching mechanisms, and performance," Materials Science and Engineering: R: Reports, vol. 83, pp. 1-59, 2014.
[1-9] Paul McLellan, "Persistent Memory: We Have Cleared the Tower," Cadence, 2020.
[1-10] N. Setter, D. Damjanovic, L. Eng, G. Fox, S. Gevorgian, S. Hong, A. Kingon, H. Kohlstedt, N. Park, and G. Stephenson, "Ferroelectric thin films: Review of materials, properties, and applications," Journal of applied physics, vol. 100, no. 5, pp. 051606, 2006.
[1-11] Q.-F. Ou, B.-S. Xiong, L. Yu, J. Wen, L. Wang, and Y. Tong, "In-memory logic operations and neuromorphic computing in non-volatile random access memory," Materials, vol. 13, no. 16, pp. 3532, 2020.
[1-12] F. Ambriz-Vargas, G. Kolhatkar, M. Broyer, A. Hadj-Youssef, R. Nouar, A. Sarkissian, R. Thomas, C. Gomez-Yáñez, M. A. Gauthier, and A. Ruediger, "A complementary metal oxide semiconductor process-compatible ferroelectric tunnel junction," ACS applied materials & interfaces, vol. 9, no. 15, pp. 13262-13268, 2017.
[1-13] T. Mikolajick, S. Slesazeck, M. H. Park, and U. Schroeder, "Ferroelectric hafnium oxide for ferroelectric random-access memories and ferroelectric field-effect transistors," MRS Bulletin, vol. 43, no. 5, pp. 340-346, 2018.
[1-14] S. J. Kim, J. Mohan, S. R. Summerfelt, and J. Kim, "Ferroelectric Hf0.5 Zr0.5O2 thin films: A review of recent advances," Jom, vol. 71, no. 1, pp. 246-255, 2019.
[1-15] J. Muller, T. S. Boscke, U. Schroder, S. Mueller, D. Brauhaus, U. Bottger, L. Frey, and T. Mikolajick, "Ferroelectricity in simple binary ZrO2 and HfO2," Nano letters, vol. 12, no. 8, pp. 4318-4323, 2012.
第二章
[2-1] H. Mulaosmanovic, S. Dünkel, J. Müller, M. Trentzsch, S. Beyer, E. T. Breyer, T. Mikolajick, and S. Slesazeck, "Impact of read operation on the performance of HfO2-based ferroelectric FETs," IEEE Electron Device Letters, vol. 41, no. 9, pp. 1420-1423, 2020.
[2-2] C.-Y. Chan, K.-Y. Chen, H.-K. Peng, and Y.-H. Wu, "FeFET Memory Featuring Large Memory Window and Robust Endurance of Long-Pulse Cycling by Interface Engineerlng Using High-k AlON." pp. 1-2.
[2-3] H.-K. Peng, C.-Y. Chan, K.-Y. Chen, and Y.-H. Wu, "Enabling large memory window and high reliability for FeFET memory by integrating AlON interfacial layer," Applied Physics Letters, vol. 118, no. 10, pp. 103503, 2021.
[2-4] J.-H. Bae, D. Kwon, N. Jeon, S. Cheema, A. J. Tan, C. Hu, and S. Salahuddin, "Highly Scaled, High Endurance, Ω-Gate, Nanowire Ferroelectric FET Memory Transistors," IEEE Electron Device Letters, vol. 41, no. 11, pp. 1637-1640, 2020.
第三章
[3-1] Y. Kwon, "Designing systems for emerging memory technologies," 2018.
[3-2] J.-H. Bae, D. Kwon, N. Jeon, S. Cheema, A. J. Tan, C. Hu, and S. Salahuddin, "Highly Scaled, High Endurance, Ω-Gate, Nanowire Ferroelectric FET Memory Transistors," IEEE Electron Device Letters, vol. 41, no. 11, pp. 1637-1640, 2020.
第四章
[4-1] K. Toprasertpong, K. Tahara, M. Takenaka, and S. Takagi, "Evaluation of polarization characteristics in metal/ferroelectric/semiconductor capacitors and ferroelectric field-effect transistors," Applied Physics Letters, vol. 116, no. 24, pp. 242903, 2020.
[4-2] A. Das, S. Maikap, W.-C. Li, L.-B. Chang, and J.-R. Yang, "Physical and Memory Characteristics of Atomic-Layer-Deposited High-k Hafnium–Aluminum-Oxide Nanocrystal Capacitors with Iridium-Oxide Metal Gate," Japanese Journal of Applied Physics, vol. 48, no. 5S1, pp. 05DF02, 2009.
[4-3] S. R. Teeparthi, E. W. Awin, and R. Kumar, "Dominating role of crystal structure over defect chemistry in black and white zirconia on visible light photocatalytic activity," Scientific reports, vol. 8, no. 1, pp. 1-11, 2018.
[4-4] M.-J. Tsai, P.-J. Chen, D.-B. Ruan, F.-J. Hou, P.-Y. Peng, L.-G. Chen, and Y.-C. Wu, "Investigation of 5-nm-Thick Hf0.5Zr0.5O2 ferroelectric FinFET dimensions for sub-60-mV/decade subthreshold slope," IEEE Journal of the Electron Devices Society, vol. 7, pp. 1033-1037, 2019.